Tutorial on
 Identity-Based Cryptography

Dr. Abhijit Das

Associate Professor
Department of Computer Science and Engineering Indian Institute of Technology Kharagpur
http://cse.iitkgp.ac.in/~abhij/

January 30, 2017

Short Term Course on Introduction to Cryptography Department of Mathematics, IIT Kharagpur

- Public keys are used for encryption and digital signature verification.
- Private keys are used for decryption and digital signature generation.
- Public keys are accessible to all parties.
- Private keys are to be kept secret.
- How to associate entities with their respective public keys?
- An attacker may present a harmful key as the public key of a victim.
- Before using a public key, one should verify that the key belongs to the claimed party.

Identity-Based Cryptography Abhijit Das

Itit-Based Key Exchange (IBKE) Identity-Based Encryption (IIE) Identity-Based Signatures (IBS)

Public-Key Certificates

Identity-Based Cryptography Abhijit Das

Public-Key Certificates: Use

- There is a trusted Certification Authority (CA).
- CA issues public-key certificates to parties.
- A certificate contains a public key, some identifying information of the party to whom the key belongs, a period of validity.
- The certificate is digitally signed by the CA.
- Key compromise and/or malicious activities may lead to revocation of certificates.
- The CA maintains a list of revoked certificates.
- Alice wants to send an encrypted message to Bob.
- Alice obtains Bob's public-key certificate.
- Alice verifies the signature of the CA on the certificate.
- Alice confirms that Bob's identity is stored in the certificate.
- Alice checks the validity of the certificate.
- Alice ensures that the certificate does not reside in the revocation list maintained by the CA.
- Alice then uses Bob's public key for encryption.

Identity-Based Cryptography: A Viable Substitute

Problems of Public-Key Certificates

- A trusted CA is needed.
- Every certificate validation requires contact with the CA for the verification key and for the revocation list.

Identity-Based Public Keys

- Alice's identity (like e-mail ID) is used as her public key.
- No contact with the CA is necessary to validate public keys.
- A trusted authority is still needed: Private-Key Generator (PKG) or Key-Generation Center (KGC).
- Each party should meet the PKG privately once (registration phase).
- Limitation: Revocation of public keys may be difficult.

Introduction to Bilinear Pairing

- Let G_{1}, G_{2}, G_{3} be groups of finite order r (usually prime)
- G_{1}, G_{2} are additive, and G_{3} multiplicative.
- A bilinear pairing map $e: G_{1} \times G_{2} \rightarrow G_{3}$ satisfies:
- $e\left(P_{1}+P_{2}, Q\right)=e\left(P_{1}, Q\right) e\left(P_{2}, Q\right)$ and $e\left(P, Q_{1}+Q_{2}\right)=e\left(P, Q_{1}\right) e\left(P, Q_{2}\right)$ for all $P, P_{1}, P_{2} \in G_{1}$ and $Q, Q_{1}, Q_{2} \in G_{2}$.
- $e(a P, b Q)=e(P, Q)^{a b}$ for all $P \in G_{1}, Q \in G_{2}$, and $a, b \in \mathbb{Z}$.
- e is non-degenerate, that is, $e(P, Q)$ is not the identity of G_{3} for some P, Q.
- e is efficiently computable.
- Example: Weil or reduced Tate pairing over elliptic curves. G_{1}, G_{2} are elliptic-curve groups, G_{3} is a subgroup of the multiplicative group of a finite field.
- Special case: $G_{1}=G_{2}=G$. Example: Distorted Weil or Tate pairing on supersingular curves.

Historical Remarks

- Shamir (Crypto 1984) introduces the concept of identity-based encryption (IBE) and signature (IBS). He gives a concrete realization of an IBS scheme.
- In early 2000s, bilinear pairing maps are used for concrete realizations of IBE schemes.
- Sakai, Ohgishi and Kasahara (2000) propose an identity-based key-agreement scheme and an IBS scheme.
- Boneh and Franklin (Crypto 2001) propose an IBE scheme. Its security is proved in the random-oracle model.
- Boneh and Boyen (EuroCrypt 2004) propose an IBE scheme whose security is proved without random oracles.
- Joux (ANTS 2004) proposes a pairing-based three-party key-agreement protocol.

Diffie-Hellman Problems

- Let G be an additive group of prime order r.
- Computational Diffie-Hellman Problem (CDHP): Given $P, a P, b P \in G$, compute $a b P$.
- Decisional Diffie-Hellman Problem (DDHP): Given $P, a P, b P, z P \in G$, decide whether $x \equiv a b(\bmod r)$.
- If $e: G \times G \rightarrow G_{3}$ is a bilinear pairing map, the DDHP is easy: Check whether $e(a P, b P)=e(P, z P)$.
- The CDHP is not known to be aided by e.
- G is called a gap Diffie-Hellman (GDH) group.
- External Diffie-Hellman Assumption (XDH): Presence of bilinear pairing maps $e: G_{1} \times G_{2} \rightarrow G_{3}$ does not make DDHP easy in G_{1} or G_{2} (different groups).

Bilinear Diffie-Hellman Problems

- Let $e: G \times G \rightarrow G_{3}$ be a bilinear pairing map.
- (Computational) Bilinear Diffie-Hellman Problem (BDHP): Given $P, a P, b P, c P \in G$, compute $e(P, P)^{a b c}$.
- Decisional Bilinear Diffie-Hellman Problem (DBDHP): Given $P, a P, b P, c P, z P \in G$, decide whether $z \equiv a b c(\bmod r)\left(\right.$ that is, $\left.e(P, P)^{z}=e(P, P)^{a b c}\right)$.
- Bilinear Diffie-Hellman Assumption: The BDHP and DBDHP are computationally infeasible for suitably chosen groups even in the presence of efficiently computable bilinear pairing maps.
- DLP in G should be difficult (as $\left.e(a P, b P)^{c}=e(P, P)^{a b c}\right)$.
- DHP in G should be difficult (as $\left.e(a b P, c P)=e(P, P)^{a b c}\right)$.

Set-up Phase

The PKG/KGC/TA sets up the following parameters.

- Groups G, G_{3} of prime order r.
- A bilinear pairing map $e: G \times G \rightarrow G_{3}$.
- A generator P of G.
- A hash function H to map public identities (like e-mail addresses) to elements of G.
- PKG's master secret key $s \in U \mathbb{Z}_{r}$.
- PKG's public key $P_{P K G}=s P$.

dentity-Based Cryptography
 Abhijit Das

SOK Key Agreement (Contd)

Registration (Key-Extraction) Phase

- A user Usr meets the PKG securely.
- The PKG hashes the public identity of Usr to generate $P_{U s r}=H\left(I D_{U s r}\right) \in G$.
- The PKG delivers $D_{U s r}=s P_{U s r} \in G$ to Usr.

Notes

- Anybody can compute the hashed public identity P_{U}.
- Computation of $D_{U s r}$ is equivalent to solving DHP in G $\left(P_{U s r}=u P, P_{P K G}=s P\right.$, and $\left.D_{U s r}=u s P\right)$. This is assumed to be intractable.
- Alice and Bob securely registers with the PKG to get $D_{\text {Alice }}$ and $D_{B o b}$.
- Anybody can compute $P_{\text {Alice }}$ and $P_{\text {Bob }}$.

SOK Key Agreement (Contd)

Key Agreement (Non-interactive)

- Alice computes Bob's hashed identity $P_{B o b}$.
- Alice computes $S_{\text {Alice }}=e\left(D_{\text {Alice }}, P_{\text {Bob }}\right)$.
- Bob computes Alice's hashed identity $P_{\text {Alice }}$.
- Bob computes $S_{B o b}=e\left(P_{\text {Alice }}, D_{B o b}\right)$.
- $S_{\text {Alice }}=e\left(D_{\text {Alice }}, P_{\text {Bob }}\right)=e\left(s P_{\text {Alice }}, P_{\text {Bob }}\right)=$ $e\left(P_{\text {Alice }}, P_{\text {Bob }}\right)^{s}=e\left(P_{\text {Alice }}, s P_{\text {Bob }}\right)=e\left(P_{\text {Alice }}, D_{\text {Bob }}\right)$ is the shared secret.

Security (Based on BDHP)

- Let $P_{\text {Alice }}=a P$ and $P_{B o b}=b P$. We have $P_{P K G}=s P$.
- $P, a P, b P, s P$ are known to any attacker.
- The shared secret is $e\left(P_{\text {Alice }}, P_{\text {Bob }}\right)^{s}=e(P, P)^{\text {abs }}$.

Boneh-Franklin IBE

- Not an identity-based protocol.
- Alice, Bob, and Carol respectively generate $a, b, c \in u \mathbb{Z}_{r}$.
- Alice sends $a P$ to Bob and Carol.
- Bob sends $b P$ to Alice and Carol.
- Carol sends $c P$ to Alice and Bob.
- Alice computes $e(b P, c P)^{a}=e(P, P)^{a b c}$.
- Bob computes $e(a P, c P)^{b}=e(P, P)^{a b c}$.
- Carol computes $e(a P, b P)^{c}=e(P, P)^{a b c}$.
- Man-in-the-middle attack possible.

Set-up Phase

The PKG/KGC/TA sets up the following parameters.

- Groups G, G_{3} of prime order r.
- A bilinear pairing map $e: G \times G \rightarrow G_{3}$.
- A generator P of G.
- An encoding function H_{1} to map public identities (like e-mail addresses) to elements of G.
- A function $H_{2}: G_{3} \rightarrow\{0,1\}^{n}$ (n is the message length).
- PKG's master secret key $s \in u \mathbb{Z}_{r}$.
- PKG's public key $P_{P K G}=s P$.

dentity-Based Encryption (IBE)

BF IBE (Contd)

Registration (Key-Extraction) Phase

- A user Usr meets the PKG securely.
- The PKG encodes the public identity of Usr to generate $P_{U s r}=H_{1}\left(I D_{U s r}\right) \in G$.
- The PKG delivers $D_{U s r}=s P_{U s r} \in G$ to Usr.

Notes

- Anybody can compute the encoded public identity $P_{U s r}$.
- Computation of $D_{U s r}$ is equivalent to solving the DHP in G.

This is assumed to be intractable.

- Bob (the recipient) securely meets the PKG to get $D_{\text {Bob }}$.
- Anybody can compute $P_{\text {Bob }}$.

Security Models
 Security Proof
 - Boyen Encry

Security Models
Security Proof
Boneh-Boyen Encryptio

BF IBE (Contd)

Decryption

- Bob recovers M from (U, V) as $M=V \oplus H_{2}\left(e\left(D_{B o b}, U\right)\right)$.

Correctness

- Let $P_{B o b}=b P$.
- $g^{a}=e\left(P_{B o b}, P_{P K G}\right)^{a}=e(b P, s P)^{a}=e(P, P)^{a b s}$.
- $e\left(D_{B o b}, U\right)=e\left(s P_{B o b}, a P\right)=e(s b P, a P)=e(P, P)^{a b s}$

Textbook Security

- Malice knows $a P=U, b P=P_{B o b}$, and $s P=P_{P K G}$.
- His ability of computing the mask is equivalent to solving an instance of the BDHP.

IND-CPA (Semantic) Security

The IND-CPA Game

- Malice chooses messages m_{0}, m_{1} of the same bit length.
- Malice sends m_{0}, m_{1} to the victim's encryption oracle \mathscr{O}.
- \mathscr{O} chooses a bit $b \in_{U}\{0,1\}$, and encrypts m_{b}.
- The ciphertext c^{*} of m_{b} is sent to Malice as the challenge.
- Malice outputs a bit b^{\prime}. Malice wins if and only if $b^{\prime}=b$.

Notes

- Encryption must be randomized.
- A random guess of Malice succeeds with probability $1 / 2$.
- Malice succeeds with probability $1 / 2+\varepsilon$ (ε is advantage).
- If ε is less that one over all polynomial expressions in the security parameter, the scheme in IND-CPA secure.

Security Models
Boneh-Boyen Encryption

BF IBE (Contd)

Insecurity against Active Attacks

- Malice wants to get M corresponding to (U, V).
- Malice gets assistance from Bob's decryption box.
- The decryption box decrypts any ciphertext except (U, V).
- The decryption box may refuse to answer if decryption results in the message M.
- Malice queries with $U^{\prime}=U$ and $V^{\prime}=W \oplus V$ for some $W \in_{U}\{0,1\}^{n} \backslash\left\{0^{n}\right\}$ chosen by Malice.
- $\left(U^{\prime}, V^{\prime}\right) \neq(U, V)$ encrypts $M^{\prime}=M \oplus W$.
- For random W, M^{\prime} is a random n-bit string.
- The decryption box returns M^{\prime}.
- Malice computes $M=M^{\prime} \oplus W$.

Identity-Based Encryption (IBE)
 Security Models Security Proo
 $$
\begin{aligned} & \text { Security Proof } \\ & \text { Boneh-Boyen Encryption } \end{aligned}
$$

IND-CCA Security

- Malice has access to the victim's decryption oracle \mathscr{O}.
- Malice sends indifferent chosen ciphertexts for decryption before the IND-CPA game.
- Malice sends adaptive chosen ciphertexts for decryption after the IND-CPA game.
- Query on c^{*} cannot be made after the challenge is posed.
- CCA1: Decryption assistance stops after the challenge.
- CCA2: Decryption assistance continues after the challenge.
- The cryptanalysis training before and/or after the challenge is supposed to help Malice in winning.
- CCA2 is the accepted standard model of the adversary.
- In an IBE scheme, there are registration requests.
- Malice has access to the registration oracle \mathscr{R}.
- Malice can make queries to \mathscr{R} before and after the challenge.
- Bob is the targeted victim (c^{*} is generated by Bob's encryption oracle).
- Malice may never ask \mathscr{R} to reveal Bob's private key.
- Malice may ask \mathscr{R} to reveal Bob's public key (or can compute the public key himself).

Iy-Based Key Exchange (IBKE) Identity-Based Encryption (IBE)
 Security Models
 Security Proof

Security Proof in the Random-Oracle Model (ROM)

In Real Life

- Malice can compute all hash functions himself.
- Malice can access encryption/decryption/registration oracles.

In ROM Proofs

- Malice communicates only with Ronald.
- Ronald has no access to the victim's/PKG's private keys.
- Ronald has full control over hash computations.
- Malice has to contact Ronald if he wants to hash anything.
- By manipulating hash values, Ronald reliably simulates encryption/decryption/registration queries.
- If the simulation is reliable, Malice unleashes his cryptanalytic prowess to win the game.

A random oracle is a function H from $\{0,1\}^{*}$ to a finite set D.

- H is deterministic.
- For each input $\alpha \in\{0,1\}^{*}, H(\alpha)$ is a uniformly random element of D.
- H is efficiently computable.

In theory: Random oracles do not exist.

In practice

- H can be treated as a random oracle if its output cannot be distinguished from truly random output by any probabilistic polynomial-time algorithm.
- Cryptographic hash functions are used as random oracles.

Identity-Based Encryption (IBE)
 Security Models
 Security Proo
 Boneh-Boyen Encryption
 Hash Queries

- Ronald maintains a table T of $(\alpha, H(\alpha))$ values.
- Initially, T is empty.
- Whenever some $H(Q)$ needs to be returned, Ronald searches for Q in T.
- If the search is successful, the second stored component is returned.
- If the search is unsuccessful, Ronald chooses a uniformly random $\gamma \in D$, stores (Q, γ) in T, and returns γ.
- The attack runs for polynomial time, so the size of T never grows beyond polynomial. Searching in T is efficient.
- Sometimes additional information is stored in entries of T.

IND-CPA Security Implies IND-ID-CPA Security

- H_{1}, H_{2} are treated as hash functions (random oracles).
- Step 1: Infeasibility of BDHP in G implies IND-CPA security.
- Step 2: IND-CPA security implies IND-ID-CPA security.
- If there is an IND-ID-CPA adversary \mathscr{A} for BF IBE, then there is an IND-CPA adversary \mathscr{B} for BF IBE.
- If there is an IND-CPA adversary \mathscr{B} for BF IBE, then Ronald can reliably solve the BDHP in G.
- Let the advantage of \mathscr{A} be ε.
- Let the number of H_{1} and H_{2} queries be $q_{H_{1}}$ and $q_{H_{2}}$.
- Then, the advantage of \mathscr{B} is $\frac{\varepsilon}{e\left(1+q_{H_{1}}\right)}$, and the advantage of Ronald in solving the BDHP is $\frac{2 \varepsilon}{e\left(1+q_{H_{1}}\right) q_{H_{2}}}$.

dentity-Based Cryptography
 Abhijit Das

- Let \mathscr{A} be a PPT IND-ID-CPA adversary.
- Ronald interacts with \mathscr{A} and \mathscr{O}.
- System parameters $G, G_{3}, r, e, P, P_{P K G}, n, H_{2}$ are public.
- The master secret s is fixed, but not known to \mathscr{A}, Ronald, or \mathscr{O}.
- Bob is the targeted victim decided by \mathscr{A}.
- A registration query to get $D_{\text {Bob }}$ cannot be made by \mathscr{A}.
- A query to get $P_{\text {Bob }}=H_{1}\left(I D_{\text {Bob }}\right)$ is allowed. \mathscr{A} cannot know $P_{B o b}$ without making this query.
- H_{1} is a random oracle to \mathscr{A}.
- The encryption oracle \mathscr{O} uses actual hash values. $P_{\text {Bob }}^{(\mathscr{O})}$ and $D_{\text {Bob }}^{(\sigma)}$ are the actual (not simulated) keys of Bob. Both Ronald and \mathscr{O} knows how to compute $P_{U s r}^{(\mathscr{O})}$ for any Usr.

Security Models Security Proof

Boneh-Boyen Encryption

Handling H_{1} Queries

Key Extraction: $P_{U s r}=H_{1}\left(I D_{U s r}\right), D_{U s r}=s P_{U s r}$.
Encryption: $U=a P, g=e\left(P_{B O b}, P_{P K G}\right), V=M \oplus H_{2}\left(g^{a}\right)$.
Decryption: $M=V \oplus H_{2}\left(e\left(D_{\text {Bob }}, U\right)\right)$.

- H_{1} hashes public ID's to public keys.
- Public keys are needed for key extraction and encryption.
- Ronald does not know s. Let $P_{U s r}=t P$ (where Usr $\left.\neq B o b\right)$. Then, $D_{U s r}=s P_{U s r}=s t P=t(s P)=t P_{P K G}$.
- If $U s r=B o b, D_{B o b}$ is not needed. Let $P_{B o b}=t P_{B o b}^{(O)}$, and $C^{*}=\left(U^{*}, V^{*}\right)$. Then, $e\left(D_{B o b}^{(O)}, U^{*}\right)=e\left(t^{-1} D_{B o b}, U^{*}\right)=$ $e\left(D_{\text {Bob }}, t^{-1} U^{*}\right)$. So if $C^{*}=\left(U^{*}, V^{*}\right)$ is an actual encryption of M_{b} done by \mathscr{O}, then $C^{* *}=\left(t^{-1} U^{*}, V^{*}\right)$ is an encryption of M_{b} simulated by Ronald.
- When a query $H_{1}\left(I D_{U s r}\right)$ comes, Ronald need not know whether Usr is the targeted victim.
- Ronald maintains an H_{1}-table of ($\left.I D_{U s r}, P_{U s r}, t, c\right)$ entries.
- Suppose that a query $H_{1}\left(I D_{U s r}\right)$ comes.
- If $I D_{U s r}$ resides in the H_{1}-table, the corresponding $P_{U s r}$ is returned.
- Otherwise, Ronald tosses a coin to get c such that $\operatorname{Pr}[c=0]=\delta \approx 1$.
- If $c=0$, Ronald assumes $I D \neq B o b$. He chooses random $t \in \mathbb{Z}_{r}^{*}$, computes $P_{U s r}=t P$, stores $\left(I D_{U s r}, P_{U s r}, t, 0\right)$ in his H_{1}-table, and returns $P_{U s r}$.
- If $c=1$, Ronald assumes $I D=B o b$. He chooses random $t \in \mathbb{Z}_{r}^{*}$, computes $P_{U s r}=t P_{U s r}^{(\overparen{O})}$, stores $\left(I D_{U s r}, P_{U s r}, t, 1\right)$ in his H_{1}-table, and returns $P_{U s r}$.
- \mathscr{A} asks Ronald to supply the private key $D_{U s r}$ of $U s r$.
- Ronald searches for $I D_{U s r}$ in his H_{1}-table.
- If the search fails, Ronald initiates an internal query for computing $H_{1}\left(I D_{U s r}\right)$ (he may force $c=0$ in this query).
- If the H_{1}-table contains an entry $\left(I D_{U s r}, P_{U_{s r}}, t, c\right)$ with $c=1$, Ronald aborts
- Finally, suppose that the H_{1}-table contains an entry $\left(I D_{U s r}, P_{U s r}, t, c\right)$ with $c=0$. Ronald computes and returns $D_{U s r}=t P_{P K G}$.
- Ronald successfully handles a key-extraction query with probability δ.

Handling the IND-CPA Game

- \mathscr{A} sends the ID of a targeted victim Bob, and two messages M_{0}, M_{1} of length n, to Ronald.
- Ronald searches for $I D_{\text {Bob }}$ in his H_{1}-table.
- If the search fails, Ronald initiates an internal query for computing $H_{1}\left(I D_{B o b}\right)$ (he may force $c=1$ in this query).
- If the H_{1}-table contains an entry ($I D_{B o b}, P_{B o b}, t, c$) with $c=0$, Ronald aborts.
- Finally, suppose that the H_{1}-table contains an entry ($I D_{\text {Bob }}, P_{\text {Bob }}, t, c$) with $c=1$.
- Ronald forwards $I D_{B o b}, M_{0}, M_{1}$ to \mathscr{O}.
- O chooses $b \in u\{0,1\}$, and returns an actual (not simulated) encryption $C^{*}=\left(U^{*}, V^{*}\right)$ of M_{b} using Bob's public key.
- Ronald forwards $C^{* *}=\left(t^{-1} U^{*}, V^{*}\right)$ to \mathscr{A}.
- Ronald successfully participates in the IND-CPA game with probability $1-\delta$.

BDH Assumption Implies IND-CPA Security

The Reduction Mechanism

- Let \mathscr{B} be a PPT IND-CPA adversary.
- Then, there exists a PPT algorithm \mathscr{C} to solve the bilinear Diffie-Hellman problem.
- \mathscr{C} takes $P, u P, v P, w P$ as inputs, and returns $D=e(P, P)^{u v w}$.
- \mathscr{C} consists of \mathscr{B} and Ronald (no external oracle \mathscr{O} now).
- All interactions are between \mathscr{B} and Ronald.
- System parameters $G, G_{3}, r, e, P, P_{P K G}, n, H_{1}$ are public.
- Bob is the targeted victim from the beginning.
- \mathscr{C} sets and publicizes $P_{P K G}=u P$ and $P_{B o b}=v P$.
- The master secret is therefore u.
- Bob's private key $D_{B o b}=u P_{B o b}=u v P$ is unknown.
- H_{2} is now a random oracle to \mathscr{B}.

Identity-Based Cryptography Abhijit Das

Security Mode

Sonehth-Boyen Encryption

Handling the IND-CPA Game

- \mathscr{B} sends two messages M_{0}, M_{1} of length n to Ronald.
- Ronald takes $U^{*}=w P$ and $V^{*} \in u\{0,1\}^{n}$, and sends the challenge ciphertext $C^{*}=\left(U^{*}, V^{*}\right)$ as a purported encryption of M_{b} (for some $b \in_{U}\{0,1\}$).
- $P_{P K G}=u P, P_{B o b}=v P$, and $U^{*}=w P$, so the mask before hashing is $e\left(P_{\text {Bob }}, P_{P K G}\right)^{w}=e(v P, u P)^{w}=e(P, P)^{u v w}=D$.
- If $H_{2}(D)=V^{*} \oplus M_{b}$, then C^{*} is a valid ciphertext for M_{b}.
- \mathscr{B} makes an H_{2}-query on D in the post-challenge phase with very high probability, so D ends up in Ronald's H_{2}-table
- Ronald cannot identify which is the correct D (difficulty of the decisional BDH problem).
- Ronald chooses a random (Q, W) entry from his H_{2}-table, and returns W as $D=e(P, P)^{u v W}$.
- The Fujisaki-Okamoto transform converts an IND-CPA secure encryption scheme to an IND-CCA secure scheme.
- Two additional hash functions $H_{3}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow \mathbb{Z}_{r}^{*}$ and $H_{4}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ are used.
- Encryption of $M \in\{0,1\}^{n}$ is (U, V, W).
- Compute $P_{B o b}=H_{1}\left(I D_{B o b}\right) \in G$.
- Choose $\sigma \in u\{0,1\}^{n}$, and compute $a=H_{3}(\sigma, M)$.
- Compute $g=e\left(P_{\text {Bob }}, P_{P K G}\right)$.
- $U=a P, V=\sigma \oplus H_{2}\left(g^{a}\right)$, and $W=M \oplus H_{4}(\sigma)$.
- Decryption of (U, V, W) :
- Recover $\sigma=V \oplus H_{2}\left(e\left(D_{\text {Bob }}, U\right)\right)$
- Recover $M=W \oplus H_{4}(\sigma)$.
- Set $a=H_{3}(\sigma, M)$. If $U \neq a P$, return failure
- Return M.

```
        Identity-Based Encrypioion (IBE)
            Security Models
            Security Proof Encryptio
```


Boneh-Boyen IBE

Setup Phase

- G (additive) and G_{3} (multiplicative) are groups of prime order r. P is a generator of G.
- $e: G \times G \rightarrow G_{3}$ is a bilinear pairing map.
- Master secret key of PKG: two integers $s_{1}, s_{2} \in \mathbb{Z}_{r}^{*}$.
- Public key of PKG: the elements $Y_{1}=s_{1} P$ and $Y_{2}=s_{2} P$ of G.

Registration Phase

- Let $P_{B o b} \in \mathbb{Z}_{r}^{*}$ be the hashed public identity of Bob.
- The PKG generates $t \in u \mathbb{Z}_{r}^{*}$, and computes $D=\left(P_{\text {Bob }}+s_{1}+s_{2} t\right)^{-1} P \in G$.
- Bob's private key is (t, D).
- Note: Registration phase is randomized.

Boneh-Boyen IBE (Contd)

Encryption of $M \in G$

- Alice generates $k \in U \mathbb{Z}_{r}^{*}$.
- Alice computes $U=k P_{B o b} P+k Y_{1} \in G, V=k Y_{2} \in G$, and $W=M \times e(P, P)^{k} \in G_{3}$.
- The ciphertext is the triple (U, V, W).

Decryption of (U, V, W)

- $U+t V=k\left(P_{\text {Bob }}+s_{1}+s_{2} t\right) P$.
- $e(U+t V, D)=$

$$
e\left(k\left(P_{\mathrm{Bob}}+s_{1}+s_{2} t\right) P,\left(P_{\mathrm{Bob}}+s_{1}+s_{2} t\right)^{-1} P\right)=e(P, P)^{k} .
$$

- $M=W \times e(U+t V, D)^{-1}$.
- q-BDHI Problem: Given $P, a P, a^{2} P, a^{3} P, \ldots, a^{q} P \in G$, compute $e(P, P)^{\mathrm{a}^{-1}(\bmod r)}$ (I in BDHI is Inversion).
- Decisional q-BDHI Problem: Given $P, a P, a^{2} P, a^{3} P, \ldots, a^{q} P \in G$ and $T \in G_{3}$, decide whether $T=e(P, P)^{a^{-1}(\bmod r)}$.
- q-BDHI assumption: These problems are infeasible.
- Boneh-Boyen encryption is IND-sID-CPA secure for a pre-selected victim (Bob) if the decisional q-BDHI assumption holds, where q is the maximum number of key-extraction queries allowed.
- The proof does not require random oracles.
- Using a transform proposed by Canetti et al., the scheme can be made IND-sID-CCA secure.
Shamir's IBS (Contd) \(\left.\begin{array}{c}Identity-Based Key Exchange (IBKE)

Identity-Based Encryption (IBE)

Identity-Based Signatures (IBS)\end{array}\right) \quad\)| Shamir Signatures |
| :---: |
| soK Signatures |

Signature Generation

- Bob chooses $x \in u \mathbb{Z}_{n}$.
- Bob computes $s \equiv x^{e}(\bmod n)$ and $t \equiv D_{B o b} \times x^{H(s, M)}(\bmod n)$.
- Bob's signature on M is the pair (s, t).

Signature Verification

- $t^{e} \equiv P_{B o b} \times\left(x^{e}\right)^{H(s, M)} \equiv P_{B o b} \times s^{H(s, M)}(\bmod n)$.

Security

- A forger can generate $x, s, H(s, M)$.
- Generating the correct t is equivalent to knowing $D_{B o b}$
- Getting $D_{B o b}$ from $P_{B o b}$ is the RSA problem.

ity-Based Key Exchange (IBKE Identity-Based Encryption (IBE Identity-Based Signatures (IBS)
 Shamir Signature
 Sakai-Ohgishi-Kasahara (SOK) IBS

Setup Phase

- G (additive) and G_{3} (multiplicative) are groups of prime order $r . P$ is a generator of G
- e: $G \times G \rightarrow G_{3}$ is a bilinear pairing map.
- Master secret key of PKG: $s \in u \mathbb{Z}_{r}^{*}$.
- Public key of PKG: $P_{P K G}=s P \in G$
- $H:\{0,1\}^{*} \rightarrow G$ is a public hash function.

Registration Phase

- Bob's public key: $P_{\text {Bob }}=H\left(I D_{B o b}\right) \in G$.
- Bob's private key: $D_{B o b}=s P_{B o b} \in G$.

```
Mentity-Based Encryption(IBE)

\section*{References}
- Abhijit Das, Computational Number Theory, Chapman and Hall/CRC, 2013.
- R. Sakai, K. Ohgishi and M. Kasahara, Cryptosystems based on pairing, SCIS, 2000.
- Antoine Joux, A one-round protocol for tripartite Diffie-Hellman, ANTS-4, 385-394, 2004.
- Dan Boneh and Matthew K. Franklin, Identity based encryption from the Weil pairing, Crypto, 213-229, 2001 (Journal version: SIAM Journal of Computing, 2003)
- Dan Boneh and Xavier Boyen, Efficient selective-ID secure identity based encryption without random oracles EuroCrypt, 223-238, 2004.
- Adi Shamir, Identity based cryptosystems and signature schemes, Crypto'84, 47-53, 1985.
```

 dentity-Based Encryption (IBE)
 OK Signatures
SOK Signature

```

\section*{SOK IBS (Contd)}

\section*{Signature Generation}
- Bob chooses \(d \in u \mathbb{Z}_{r}\), and computes \(U=d P \in G\).
- Bob also computes \(h=H\left(P_{\text {Bob }}, M, U\right) \in G\) and
\(V=D_{B o b}+d h \in G\).
- Bob's signature on \(M\) is \((U, V)\).

\section*{Signature Verification}
- \(e(P, V)=e\left(P, D_{B o b}+d h\right)\)
\(=e\left(P, s P_{B o b}+d h\right)\)
\(=e\left(P, s P_{\text {Bob }}\right) e(P, d h)\)
\(=e\left(s P, P_{B o b}\right) e(d P, h)\)
\(=e\left(P_{P K G}, P_{B o b}\right) e\left(U, H\left(P_{B o b}, M, U\right)\right)\)
```

l
SOK Signatures
Thank You

```

\section*{Contact}
abhij@cse.iitkgp.ernet.in, SadTijihba@gmail.com http://cse.iitkgp.ac.in/~abhij/```

