Elliptic-Curve Cryptography (ECC)

Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Talk presented in the
Second International Conference on Mathematics and Cangp(CMC 2015
Haldia, 5-10 January, 2015

Elliptic Curves and Cryptography

Koblitz (1987) and Miller (1985) first recommended the use of
elliptic-curve groups (over finite fields) in cryptosystems.

Use of supersingular curves discarded after the proposal of the
Menezes—Okamoto—Vanstone (1993) or FreyelR(1994) attack.

ECDSA was proposed by Johnson and Menezes (1999) and adspded ¢
digital signature standard.
Use of pairing in new protocols

Sakai—Ohgishi—Kasahara two-party key agreement (2000)
Boneh—-Franklin identity-based encryption (2001)

Joux three-party key agreement (2004)
Boneh—-Lynn—Shacham short signature scheme (2004)

Numerous other applications of pairing after this.

Supersingular curves are frequently used in these pairing-bastedt @i

Organization of the Talk

Part 1: Arithmetic of Elliptic Curves (over Finite Fields)
Part 2: Classical Elliptic-Curve Cryptography

Part 3: Efficient Implementation

Part 4: Introduction to Pairing

Part 5: Pairing-Based Cryptography

Part 6: Sample Application—ECDSA Batch Verification

PART 1
ARITHMETIC OF ELLIPTIC CURVES

Elliptic Curves

LetK be a field.

An elliptic curve E overK is defined by th&\Veierstrass equation
E: Y2+ auxy+agy = X° + apx® + agx+ a, & € K.

The curve should bsmooth (no singularities).

Special forms

charK #2,3:y? =x3+ax+b, abeK.

charK = 3: y2 = X3 + byx? + bax+ bg, bj € K.

chaK = 2:

Non-supersingular or ordinary curve: y> +xy=x3+ax +b, a,b € K.
Supersingular curve: y? +ay = x> +bx+c, a,b,c € K.

Real Elliptic Curves: Example

N
NI

ﬁ
N

(@) y»=x3—x+1 (b) y»=x3—x

\/x
=

The Elliptic-Curve Group

Any (x,y) € K? satisfying the equation of an elliptic curiis called a
K-rational point onE.

Point at infinity:
There is a single point at infinity o, denoted by’
This point cannot be visualized in the two-dimensiopay) plane.

The point exists in the projective plane.
E(K) is the set of all finiteK-rational points orE and the point at infinity.
An additive group structure can be definedk(i).

0 acts as the identity of the group.

The Opposite of a Point

e Ordinary Points e Special Points
P Q
-Q -P
Q P
-P -Q

(a) (b)

Addition of Two Points

Chord and tangent rule

<N T

(b)

Doubling of a Point

Chord and tangent rule

Y o

(a (b)

s A
)

2P

Addition and Doubling Formulas

Let P = (hy, ki) andQ = (hy, k) be finite points.
Assume thaP+Q# 0 and P # 0.
Let P+ Q= (hs, k3) (Note thatP+ Q= 2P if P = Q).

E:y?=x3+ax+b
—P = (h;,—kg)
hs = A2—hi—hy
k3 =)\(hl—hg)—kl, where
ko—ky
h, —hy’ if P#Q,

2
3—h211:;—"“, ifP=Q.

Addition and Doubling in Non-Supersingular or
Ordinary Curves

E:y?2+xy=x3+ax+ b (with chaK = 2).

-P = (hl,k1+ |’l;|_)7

[(kit+ko\2 | kit+ko :
) (h]__—i—h_z) +hl—_|_h—+h1+h2+a if P+#£Q,
3 pu—
h§+r?, if P=Q,
(FLE) (m+ho)+ha+ha, iEP£Q,
ks =
h§+<h1-|-}l%-|—1)h3, if P— Q.

Addition and Doubling in Supersingular Curves
E : y?+ay= x° + bx+c (with charK = 2).

-P = (hl,k1+a),

(2
ki +ko ;
(m) +hy+hy, if P£Q,
hy =
4 2
hl;;b, if P=Q,
((kg +k .
(ReE) () +hata if P£Q,
ke —
2
(hlib)<h1+h3>+k1+a, itP=0Q.
\

Size of the Elliptic-Curve Group

Let E be an elliptic curve defined ovey = Fpn.

Hasse’s Theorem:
|E(Fg)| =q+1—t, where-2,/<t<2,/q.

tis called therace of Frobeniusatg.

If t =1, thenE is calledanomalous

If p|t, thenE is calledsupersingular.

If pft, thenE is callednon-supersingularor ordinary .
Leta,B € C satisfy 1- tx+gx2 = (1 — ax)(1— Bx). Then,
[E(Fgm)| =d™+1—(a™+ ™).

Note: E(FFq) is not necessarily cyclic.

Example of Elliptic-Curve Arithmetic
E :y? = x3 — 5x+ 1 defined oveF1.
Take the finite point® = (3,8) andQ = (10,13) onE.
Opposite: —P = (3,9), and—Q = (10,4).
Point addition
The lineL joining P andQ has slopel = % =8 (mod 17.
L has equatioh : y = 8x+c. SincelL passes through, we havec = 1.

Substitute this in the equation f&rto get(8x+ 1)? = x3 — 5x+ 1 (mod 17, that
is, X3+ 4x? + 13x = 0 (mod 17, that is,x(x— 3)(x— 10) = 0 (mod 17.
The third point of intersection i€, 1), soP+Q = —(0,1) = (0,16).

Point doubling

The tangenT to E atP has slope?Zs5 = 12(mod 17.

The equation foll isy = 12x+ 6.

SubstituteT in E to getx® 4 9x? + 4x+ 16 = 0 (mod 17, that is,
(x—3)%(x—2) =0 (mod 17.

The third point of intersection i,13), so P = —(2,13) = (2,4).

PART 2
CLASSICALELLIPTIC-CURVE CRYPTOGRAPHY

The Classical Intractable Problems
Let G be a finite cyclic additive group with a generaRrLetr = |G|.

Discrete Logarithm Problem (DLP): GivenQ € G, find x such that
Q=xP.

Diffie—Hellman Problem (DHP): GivenaP, bP € G (but nota andb),
computeabP.

Decisional Diffie—Hellman Problem (DDHP):GivenaP, bP,zP < G (but
nota, b andz), decide whethezP = abP, that is, whethez = ab (modr).

For elliptic-curve groups of suitable sizes, these problems are assumet
be intractable.

We use the terms ECDLP and ECDHP to highlight the case of
elliptic-curve groups.

Elliptic-curve groups are not necessarily cyclic, so we usually work in
sufficiently large cyclic subgroups with known generators.

How Easy Is It to Solve ECDLP/ECDHP?

ECDLP and ECDHP are believed to be equivalent.

The DLP for finite fields can be solved by subexponential algorithms (lil
NFS and FFS).

For general elliptic curves, subexponential algorithms are neither know
nor likely to exist.

Only the square-root methods work (Baby-Step-Giant-Step, Pollard rhc
and lambda, Pohlig—Hellman). For a group of siz¢éhese methods run in

O7(y/n) time.
The ECDLP on a curve ovély can be mapped to the finite-field DLP ove
Fy (MOV or FR reduction).

In generalk ~ n. For supersingular curvek e {1,2,3,4,6}.
For anomalous curves, a linear-time algorithm is known for the ECDLP.

Supersingular and anomalous curves are not used in classical ECC.

ElGamal Encryption
Let G be an additive cyclic group of sizeand with a generatdp.
Permanent key pair (of Bob)
Private key: A random integetc {2,3,...,r —1}.
Private key: The group elemeyit= dP.
Encryption
Alice wants to encrypt the messalyec G.
Alice generates a random session privatedey {2,3,...,r — 1}.
Alice computesS=d'P andT = M +d'Y (whereY is Bob's public key).
Alice sendg S T) to Bob.

Decryption
Bob recoversvl = T — dSusing his private keyl.
CorrectnessdS=d'Y = dd'P.

Security

An eavesdropper knowdP andd’P.
Computing the masld'P is equivalent to solving an instance of the DHRGN

Elliptic Curve Digital Signature Algorithm (ECDSA)
Let G be an additive cyclic group of sizeand with a generatd®.
Key pair: Private keyd € {2,3,...,r — 1}, and public keyy = dP.
Signature generation
Bob maps the messadyeto a representativenc {0,1,2,...,r — 1}.
Bob generates a random session éeg {2,3,...,r —1}.
Bob computeS= d'P, s= x(S) (modr) andt = (m+ds)d’~* (modr).
Bob’s signature oM is the pair(s; t).

Signature verification
Computew =t~ (modr), u = mw(modr), andv = sw(modr).
ComputeV = uP+VvY € G (here,Y is Bob’s public key).
Accept the signature if and onlyx{V) = s (modr).

Correctness
d' = (m+dsgt~! = (mw+dsw) = uy + upd (modr).
S=dP=uP+vdP=uP+VY.

PART 3
EFFICIENT IMPLEMENTATION

What to Implement?

A good finite-field library is the basic necessity. We assume that such &
library is available.

Elliptic-curve point addition and doubling are governed by fixed formule

The most time-consuming operation in classical EC@lliptic-curve
scalar multiplication: Given an integen and an elliptic-curve poir,
computenP.

It is easy to find the opposite of a point, so we assume0.
Scalar multiplication is the inverse of ECDLP (givBrandnP, computen).
Scalar multiplication behaves like a one-way function.

A lot of optimization techniques apply to scalar-multiplication
implementations.

Here, we deal with software implementations only.

Left-to-Right Scalar Multiplication

We are given a poirf® on an elliptic curveE defined over somg,.
We assume that the arithmetic functionsrgfare already available.
Letr be the order oP.

Our task is to computaP for some integen € {1,2,...,r — 1}.

Letn= (1ns_1ns_2...N1Np)2 be the binary representation rof
Initialize S=P.
Fori=s—1s-2,...,1,0, repeat:

SetS=2S. /* Doubling */
If (nj =1), then seS=S+P. * Conditional adding */
ReturnS.

sdoubling operations.
At mosts addition operationss/2 additions on an average.
s~ log,n.

Left-to-Right Scalar Multiplication: Example

Consider the curve : y? = x3 4 4x+ 3 modulop = 607.
TakeP = (234,121), andn = 410= (110011010,.

[Init] S=P=(234121).

[i=7] Dbl: S:=2S=(65216), Add:S:=S+P=(2,176).

[i=6] Dbl: S:=2S=(223283), Add: skipped.

[i =5] Dbl: S:=2S=(485464), Add: skipped.

[i=4] Dbl: S:=2S=(48476), Add:S:=S+P=(57325).

[i=3] Dbl S:=25=(31,196), Add:S:=S+P = (403379).

[i=2] Dbl S:=2S= (461 250), Add: skipped.

[i=1] Dbl: S:=2S=(389228), Add: S:= S+ P = (170,25).
(

[i=0] Dbl S:=2S=(541197), Add: skipped.

ThereforenP = (541,197). Requires B + 4A.

Windowed Scalar Multiplication

Choose a small window size.

Precomput@Pfora=0,1,2,...,2¥ - 1.
Letn= (N{N;_1N¢_2...N1Np)ow be the -ary representation of.
Initialize S= N;P (use the precomputed table).
Fori=t—1t—2,...,1 0, repeat:

Forj=0,1,2,...,w—1, setS=2S.

SetS= S+ N;P (use the precomputed table).

ReturnS.

sdoubling operations.
Abouts/w additions at the cost of*2additions during precomputation.
Practical choice of window sizev = 4.

Windowed Scalar Multiplication: Example

Consider the curve : y? = x3 4 4x+ 3 modulop = 607.
TakeP = (234,121), w= 3, andn = 410= (110 011 010, = (632)s.

[Precomputation] B = (65,216), 3P = (2,176), 4P = (368 523),
5P = (14,539), 6P = (223 283), and P = (96,385).

[nit] S:=6P=(223283.

[i=1] Dbl S:=2S= (485464
Dbl: S:=2S= (484,76)
Dbl: S:=2S= (431,45)
Add: S:= S+ 3P = (403 378)

[=0] Dbl S:=2S= (461250
Dbl: S:=2S= (389228
Dbl: S:=2S=(402361)
Add: S:=S+2P = (541,197

Requires ® + 2A in the loop. Precomputation require® 4 5A.
For large exponents, the precomputation overhead is insignificant.

Windowed Method with Reduced Precomputation

We represent = (NtN;_1N;_2...N1Np)ow for aw-bit window.
Precompute only the odd multipl&3P,5P, ..., (2V - 1)P.
Express each; = 2" y; with v; odd.
Earlier, we hadv doubling operations followed by one addition.
Now, we have:

w—r; doubling operations:= 25)

One addition = S+ viP)
ri doubling operationsY:= 2S)

The counts of doubling and addition operations do not change in the lo
Precomputation effort is almost halved.

Windowed Method: Example

Consider the curve : y* = x3 4 4x+ 3 modulop = 607.
TakeP = (234,121), w= 3, andn = 410= (110 011 010, = (632)s.

[Precomputation] B = (65,216), 3P = (2,176), 5P = (14,539), and
7P = (96,385).
[Init] S=0.
[i=2] Dbl: S:=25=0
Dbl: S:=2S=0
Add: S:= S+3P=(2,176)
Dbl: S:=2S= (223283
[i=1] Dbl S:=2S= (485464)
Dbl: S:=2S= (484,76)
Dbl: S:=2S= (431 45)
Add: S:= S+ 3P = (403 379)
[i=0] Dbl S:=2S= (461 250)
Dbl: S:=2S= (389,228
Add: S:=S+P = (170,25)
Dbl: S:=2S= (541197

Sliding (Non-Adjacent) Window Method

Precompute only the odd multiples IBf
Skip 0's after a window (do doubling operations only).
The next window starts at the first 1 located after the last window.

The next window is handled as in the windowed method with reduced
precomputation.

Example: Taken = 410= (11001101(,.

The windows are: 11® 110 10.

Now, the sequence of operations is:
Init Sto .
First window: Dbl, Dbl, Add (®), Dbl.
Skip: Dbl.
Second window: Dbl, Dbl, Add @), Dbl.
Third window: Dbl, Add @), Dbl.

Signed Binary Representation

Allow negative digits.
Represent as(ng_1M_2...N1Mo)2 = St_oNy 2' with eachn; € {~1,0,1}.

If no two consecutive digits are non-zero, this representation is called &
non-adjacent form (NAF).

It is easy to precomputeP.
Replace runs of consecutive 1's.
...0111110.. can be replaced by.lOOOC[O. .., wherel = —1.

Signed-binary representationofs not unique. For example,
23=16+4+2+1=(10111),=16+8-1=(11001), =32-8—-1=
(101001),.

The NAF representation is unique and has the least possible number o
signed digits.

Computation of NAF

Letn= (NgNs_1Ns_2...N1No)>2.
We addn with 2n. The sum may have a bit-size two more than that.of

n O 0 Ns Ns-1 ... N2 N1 Ng

2n O Ns Ns1 N2 ... N1 ng O

3n d5+ 1 ds dsq ds o ... di dy ng
Outputcarry Csi2 Csy1 € Cs1 ... C C1 G

We haveci ;1 = [(nj+niy1+6)/2], andd; = nj +ni; 1+ ¢ — 2Ci 1.

Now, we subtrach from 3n and discard the rightmost zero bit. We do not
do any borrow adjustment here, that is; Q is retained ag = —1.

3n d5+]_ ds ds_ 1 dS—Z e dl d() n()
n O 0 Ns N1 ... N2 M Ng
2n My Mg Mgy Mg ... My mp O

Thereforemy =di —nj 1 =N+ ¢ — 2Cj1 1.

di need not be computed;,; andm; can be computed from, n;, 1, G
alone. Table lookup can be used (only eight cases).

Computation of NAF: The Algorithm

Letn= (NgNs_1Ns_2...N1No)2. We takens,1 = ng; 2 =0.
To compute the NAFKMg, 1MsMs_1 ... Mymp) of n.

Initialize c = 0.

Fori=0,1,2,...,s+1, repeat: /* You may use table lookup *
Setcpext= | (N +Ni11+¢)/2].
Setmy = nj + C— 2Cpext:
Setc = Chext

Return(ms; ... mmy).

The digits are generated in the right-to-left order.
The expansion must tsoredfor use in left-to-right scalar-multiplication
algorithms.

Algorithms for left-to-right generation ajptimal signed binary
representation are also known.

Computation of NAF: Examples
Taken=23= (10111),.

Computation oh+ 2n;

0010
Computationof8—n: n=23 0 O _1 01 _1
1 001

Thereforen = 23 = (101001), = 25 — 23 — 20,

The NAF for 410 is 1001QL010.

For a 3-bit sliding window, we need to precompttP, +3P, +5P, +7P.
Now, the odd-valued windows are1® 10L 0 1 0

The NAF property guarantees that at least one zero exists between twc
consecutive windows.

Width- w Non-Adjacent Form (WNAF or NAF)

Take an integer widtiv > 2.

Represenn in the base 2.

The signed digits are zero or odd integers with absolute vatu@é 1.
Among anyw consecutive digits, at most one is non-zero.
ThewNAF representation is unique and optimal.

The average density of hon-zero digits in tiAF representation is
1/(w+1).

The basic NAF corresponds o= 2.

Some other variants based on addition chains
Signed fractional window method
Mixed radix
7-NAF (applicable to Koblitz curves)

Computation of the wNAF

Seti =0.

While (n > 0), repeat:
If nis even, sem = 0,
else set =nrem2, if r > 2%1 setr =r — 2%, setmy =r andn=n-—r.
Setn=n/2 and increment

Return(m_1my_z...mpmyny).

This expansion is from right to left.
If nis even, then we get the next digit as 0.

If nis odd, we compute the next (odd) remaindef n modulo 2. Itis
ensured that lies in the rangé—(2¥~1 — 1), +-(2"-1 - 1)].

When thisr is subtracted fronm, it is guaranteed that the newt— 1 digits
are all 0.

Computation of the wNAF: Example
Let us compute the width-4 NAF of = 1234567.
n__m n-m_(n-m2

|

0 1234567 7 1234560 617280

1 617280 0 308640

2 308640 O 154320

3 154320 O 77160

4 77160 0 38580

5 38580 0 19290

6 19290 0 9645

7 9645 -3 9648 4824

g 484 0 24121534567~ (10003000600(B0000007
o 2412 0 1206 0 ando g ()il
10 1206 0 603 ;

1 603 -5 608 304 (=3 x24T
12 304 0 152

13 152 0 76

176 0 38

15 38 0 19

6 19 3 16 8

17 8 0 4

18 4 0 2

9 2 0 1

20 11 o0 0

Multiple Scalar Multiplication

Let P, Q be elliptic-curve points, anh, n positive integers of the same
bit-size. We can comput@P+ nQin a single loop.

Precompute the poil+ Q.
Letm= (msms_1ms_2...MMp)2 be the binary representation of

Letn= (nsns_1Ns_2...N1No)2 be the binary representation if

Initialize S= 0.
Fori=ss—1s—2,...,10, repeat:
SetS=2S

If (my,n;) =(1,0), setS= S+ P,
else if(my,n;) = (0,1), setS= S+ Q,
else if(m,n;) = (1,1), setS= S+ (P+ Q) (use precomputed value).

ReturnS.

Multiple Scalar Multiplication (Contd)
Comparison with two scalar multiplications
The number of doubling operations is halved.

On an average, the number of addition reduces fsoongs.

Windowed adaptation
PrecomputaP+ bQfor alla,b € {0,1,2,...,2% —1}.
w = 2 is a practical choice.

w > 3 calls for too much precomputation.

Generalization to the sum of three (or more) scalar products
To computdP + mQ+nR
Precomputé®+Q, P+ R, Q+R, andP+Q+R.

Depending upon the bitg m;, nj, addP, Q, R or one of the precomputed
points toS.

Fixed-Base Scalar Multiplication

We want to computeP for somen € {0,1,2,...,r —1}.
Let the bit size of bes.

Precompute and stoRe 2P, 4P, 8P, ..., 25 1P.
Expressn = 21 422 4 ... 4 2k,

Add the precomputed point$R.

No doubling required.

Huge permanent storage overhead.

Efficient only whenP does not change frequently.

Fixed-Base Multiple Scalar Multiplication

To computemP+ nQ with s-bit scalaramandn.
P andQ are assumed to be fixed.

Precompute and store the point®,2'Q and 2(P + Q) for all
i—0,12....5-1.

Let thei-th bits ofmandn bem andn;.
If (my,n;) = (0,0), do nothing.

If (m,n) = (1,0), add 2P.
If (m,n;) =(0,1), add 2Q.
If (m,n) = (0,1), add 2(P+ Q).

No doubling needed.
Huge permanent storage.

If Pis fixed, butQ changes frequently, the amortized cost of the
precomputations of'® and 2(P+ Q) may be high.

Affine Curves

K is a field.

K is the algebraic closure &.

It is often necessary to assume tKais algebraically closed.
Affine plane: K2 = {(h,k) | h,k € K}.

For (h,k) € K2, the field elementh, k are calledaffine coordinates

Affine curve: Defined by a polynomial equation:
C:f(X,Y)=0.

It is customary to consider only irreducible polynomif(X, Y). If f(X,Y)
admits non-trivial factors, the cur¥@is the set-theoretic union of two (or
more) curves of smaller degrees.

Rational points on C: All points (h,k) € K? such thaf (h,k) = 0.

Rational points orC are calledinite points.

Affine Curves: Examples

Straight lines: aX+bY+c=0.
Circles: (X—a)2+(Y—-Db)2—r2=0.
Conic sections:aX? +bXY+cY? +dX+eY+f =0.

Elliptic curves: Defined by theMeierstrass equation

Y2 4 (a1X +ag)Y = X34 apX? 4 ayX + ae.

If charK # 2,3, this can be simplified a¢? = X3 +aX+b.

Hyperelliptic curves of genusg: Y2+ u(X)Y = v(X) with degu < g,

degv = 2g+ 1, andv monic.

If charK # 2, this can be simplified a6 = w(X) with degw = 2g+ 1 and
w monic.

Parabolas are hyperelliptic curves of genus 0.

Elliptic curves are hyperelliptic curves of genus 1.

Projective Plane

Define a relation~ onK3\ {(0,0,0)} as(h,k,l) ~ (n',k’,1") if h' = Ah,
k' = Ak andl’ = Al for some non-zerd € K.

~ is an equivalence relation a¢*\ {(0,0,0)}.
The equivalence class @i, k, 1) is denoted byh, k.

[h,k, 1] can be identified with the line iK® passing through the origin and
the point(h,k,1).

The set of all these equivalence classes iptiogective plane overK.
The projective plane is denoted B K).
h,k,l'in [h,k,1] are calledprojective coordinates

Projective coordinates are unique up to multiplication by non-zero elerr
of K.

The three projective coordinates cannot be simultaneously 0.

Relation Between the Affine and the Projective Planes

P2(K) is the affine plané&? plus the points at infinity.
TakeP = [h,k,1] € P2(K).
Case 1:l £ 0.
P = [h/1,k/I,1] is identified with the pointh/I,k/) € K.
The line inK2 corresponding t® meetsZ = 1 at(h/I,k/1,1).
P is called dfinite point.
Case 2:1 =0.
The line inK3 corresponding t® does not meef = 1.
P does not correspond to a pointK?.
P is apoint at infinity .
For every slope of lines in th¥, Y-plane, there exists exactly one point at
infinity.
A line passes through all the points at infinity. It is tive at infinity .
Two distinct lines (parallel or not) i?(K) always meet at a unique point.

Through any two distinct points if?(K) passes a unique line.

Passage from Affine to Projective Curves
A (multivariate) polynomial is calleilomogeneousf every non-zero term
in the polynomial has the same degree.

Example:X3+ 2XYZ— 372 is homogeneous of degreeX@® + 2XY —3Z is
not homogeneous. The zero polynomial is homogeneous of any degre

LetC:f(X,Y) = 0 be an affine curve of degrele
f(X,Y,Z) = 2% (X/Z,Y/Z) is thehomogenizationof f.
cM :£(M(X,Y,Z) = 0 is theprojective curve corresponding te.

For any non-zerad < K, we havef ™ (Ah,Ak Al) = A% M (h Kk 1). So
f(W(Ah,Ak,Al) = 0if and only iff ™ (h, k1) = 0.

The rational points o€" are all[h,k,] with f (" (h,k, I) = 0.
Finite points on C": PutZ = 1 to getf (X, Y, 1) = f(X,Y). These are
the points orC.

Points at infinity on C(": PutZ = 0 and solve fof W (X,Y,0) = 0. These
points do not belong t€.

Examples of Projective Curves

aX+bY+c=0

-~ aX+bY=0

Straight Line Circle

Straight line: aX+bY+cZ=0.
Finite points: Solutions ciX+bY+c=0.
Points at infinity: Solve foaX+bY = 0.
If b+ 0, we haveY = —(a/b)X. So[1,—(a/b),0] is the only point at infinity.
If b=0, we haveaX =0, that is,X = 0. So0[0, 1, 0] is the only point at infinity.
Circle: (X—az)?+ (Y —bz)%2 =r2z2.
Finite points: Solutions ofX —a)2+ (Y —b)2 =r2,
Points at infinity: Solve foX?+ Y2 = 0.
ForK =R, the only solution iX =Y = 0, so there is no point at infinity.
ForK = C, the solutions ar& = +iX, so there are two points at infinityl, i, 0]
and[1,—i,0].

Examples of Projective Curves (contd.)
\Y:—X Y:?(

AR
Y2=X

Parabola Hyperbola

Parabola: Y? = XZ.

Finite points: Solutions o¥? = X.

Points at infinity: Solve folv? = 0.

Y =0, s0[1,0,0] is the only point at infinity.
Hyperbola: X? —Y? =72,

Finite points: Solutions ok? —Y? = 1.

Points at infinity: Solve foX? — Y2 = 0.
Y = +X, so there are two points at infinitj1, 1,0] and[1,—1,0].

Examples of Projective Curves (contd.)

y

\J /\X
Elliptic curve: Y2Z +ayXYZ+ a3YZ? = X® 4+ apX?Z + ayXZ? + agZ°.

Finite points: Solutions o¥2 4 a; XY +agY = X3+ apyX? 4 asX + ag.

Points at infinity: Solve foX® = 0.
X =0, that is,[0,1,0] is the only point at infinity.

y
N
N

Elliptic-Curve Arithmetic in Projective Coordinates

Consider the simple Weierstrass equationy? = x3 + ax+b.
Let P = [hy, kg, l1] andQ = [hy, ko, I5] in projective coordinates.
We want to comput®+ Q = [h, k1] and 2 = [, K/, I'].

The slope of the line passing throuBrandQ is

ke k
A= T _ kol1 — kil
?*2 _ :Ll holi —hylo”
2 1
Therefore,
b 2 ﬁ B @ _ Illz(kzll—kllz)z— (hzll—hllz)z(hllerhzll)
| 1 I l1lo(holy —hyl2)2 ’
and

k_a(hom) ke
| L 1) 1

Substituting the values df andh/I gives an explicit expression fay|.
These expressions are too clumsy.

Elliptic-Curve Addition in Projective Coordinates

Practical solution: Collect common subexpressions.

T = koli—kalo,
T, = holy—hly,

Ts = T3,
Ty = ToTs,
Ts = lloT?2—T4—2hyl,Ts,
= TaTs,
k = Ti(hiloT3—Ts) —kil2Ty,
| = |41loTa.

Further optimization possible by storifgl,, kilo andl4l, in temporary
variables.

Elliptic-Curve Doubling in Projective Coordinates

The projective coordinatéds, k', |’ of 2P can be computed by the following

formulas.

T1
T2
T3
Ta
Ts
h/
K

I/

3hZ +-al?,

kila,

hiki T2,

T2 _8Ts,

T3,

2T5Ty,

Ty (4T3 —T4) — 8KETs,
8T,Ts.

Projective Coordinates and Scalar Multiplication

Computing the affine coordinates requires a division in the field. (Recal
the computation of the slopke.)

Division could be much costlier than multiplication and squaring in the
field.

Projective addition and doubling formulas do not use any division.

At the end of the loop, the sum is converted frémk,] to (h/1,k/I) by a
single division.

Projective coordinates increase the number of multiplication and squar
operations substantially.

In some situations, speedup is reported with projective coordinates.

Mixed Coordinates

The left-to-right multiplication conditionally add3to S.

The windowed variant addsP to Sfor a smalla.

P is available in affine coordinates.

The small multiples oP can be computed in affine coordinates.

Adding S= [hy, kg, l1] andaP = (hy, ko) is same as addinin, ki, 1] and
[ha, k2, 1].

Sincel, = 1, the addition algorithm can be simplified, and many operati
can be saved.

For example,
T1=kol1 —kil2

now becomes
T]_ = k2|1 — kl.

Generalized Projective Coordinates

Let c,d be positive integers. Assume that gedl) = 1.

Define an equivalence relation &%\ {(0,0,0)} as(h,k,l) ~ (W,K,I") if
and only ifY = A°h, k' = A9, andl’ = Al for some non-zerd € K.

Call the equivalence class @, k1) as[h,k,l]¢ g.

Identify the finite point(h, k) with [h, k, 1] 4.

Identify the finite pointh,k, I]cq with (h/16,k/19).
Homogenization requires replacimgpy X/Z° andy by Y/Z¢.
Give the weight to X, the weightd to Y, and the weight 1 td.

Each non-zero term in the homogenization is of the same total weight.

Generalized Projective Coordinates: Examples

The standard projective coordinates correspormad = 1.
Jacobian Coordinates:The weights are = 2 andd = 3.
L 6pez—Dahab CoordinatesThe weights are = 1 andd = 2.

For certain curves, generalized coordinates reduce the operatintsdou
point addition and doubling.

The use of mixed coordinates can produce further speedup.

Montgomery Ladders

A modification of the left-to-right scalar multiplication.
Two pointsSandT are computed in the loop.
Invariance:T = S+ P.

Initialize S= ¢ andT = P.
Fori=ss—1,s—2,...,1,0, repeat:

If (i =0) *Update(S T) to (25,2S+P) = (2SS+T) */
AssignT = S+ T andS=2S.
else /* Updatg S T) to (25+P,25+2P) = (S+T,2T) */
AssignS= S+ T andT = 2T.
ReturnS.

The Montgomery ladder is resistant to side-channel attacks.

The Montgomery ladder is unlikely to be adaptable to windowed varian

Montgomery Ladders (Contd)

Consider the curve : y* = x3 4 ax+b.

LetP = (hy,ki1), Q= (hg,k2), P+ Q= (h3,ks), andP — Q = (ha,ka).
SupposeP £ Q. The addition formula gives

(hh—hp)%hs = (hy+hp)(hihy +a) +2b— 2keko,
(—Mp)%hy = (hy+hy)(hhy +a) + 20+ 2keko.

Multiply these two formulas and substitik&= h3 + ah, + b and
ks = h3+ah, +bto get

hshs(hy —h2)? = (hihy — a)? — 4b(hy + hy).

Givenhg, hy, hy alone, one can compulg.

Thex-coordinatehs of 2P can be computed froim alone:

4hs(h3 + ahy +b) = (hf — a)® — 8bhy.

Montgomery Ladders (Contd)

We always hav&— T = —P. Moreoverx(—P) = x(P).
There is no need to compute ayrgoordinate in the Montgomery ladder.
DenotekP = (xk,Y«). ThereforeP = (x1,y1) is known.

The Montgomery loop computeg = X(S) andxy+1 = X(T). From these,
they-coordinate ofS= nT is computed as

(X1 + Xn) (XX + @) + 2D — (X1 — Xn) X1
" 2y1 '
Each iteration needs one addition and one doubling.

Montgomery ladders are particularly attractive for curves of the form
By = X2+ A% +Xx.

Projective coordinates help for these curves.

Every curve of the forny? = x3 4 ax+ b (like a curve of large prime order
cannot be converted to the Montgomery form.

PART 4
PAIRING ON ELLIPTIC CURVES

Weil Pairing

Let E be an elliptic curve defined over a finite fiedd= Fy.

Take a positive integan coprime top = charK.

Let um denote the set aft-th roots of unity inK.

We havepim C F, Wherek = ordm(q) is called theembedding degree
Let E[m]| be those points it = E(K), whose orders divide.

Weil pairing is a functioney, : E[m] x E[m| — tm.

Bilinearity:
em(P+Q,R) = em(P,Ren(Q,R),

Alternation: ey(P,P) = 1.
Skew symmetry: en(Q,P) = en(P,Q) !
Non-degeneracyIf P # &, theney(P,Q) # 1 for someQ € E[m].

If mis a prime and® # &, theney(P,Q) = 1 if and only ifQ lies in the
subgroup generated B/(that is,Q = aP for some integea).

Line Functions

To compute the equation of the lihe g or the vertical lineLr _g.

If P=Q= 0, return 1. Q R
If P= 0, returnx—x(Q). P

If Q= 0, returnx—x(P).

If P=—Q, returnx—x(P). \
Now, letP = (hy, ki) andQ = (hy, kz).

3h§ +a ko — kg
g else takel = —

If P=Q, takeA =

Setu =A h1 — kl.
Returny — Ax+ U.

The Functionsf, p (n € z, P € E(K))

These are rational functions unique up to multiplication by elemeris of
fn,p satisfy the recurrence relation:

for = fp = 1,
L
farrp = <Lp’np>fn,P forn>1,
(n+1)P,—(n+1)P
1
foop = — forn>1.
n,P

The rational function$, p also satisfy
Lnpvp
form.p =fop fv p X <an) .
(n+n')P, —(n+n")P
In particular, forn =/, we have

f . f2 I—nP,nP
2n,P = InpP X Li :
2nP, —2nP

The functionf, p is usually kept in the factored form.
The value off, p at some poinQ is usually needed.

Miller’s Algorithm for Computing f, p

Input: A point P € E and a positive integen.
Output: The rational functiori, p.
Steps
Letn= (nsns_1...N1No)2 be the binary representation mivith ng = 1.
Initialize f =1 andU = P.
Fori=s—1,5s—2,...,1,0, do the following:
/* Doubling */
Updatef = f2 x (ZLU”) andU = 2U.
/* Conditional adding */
If (nj =1), updatef =f x (ﬁ) andU = U +P.
Returnf.

Note: One may supply a poir® € E and wish to compute the valdigp(Q)
(instead of the functiofy, p). In that case, the functions; y /Loy, —2u and
Lu,p/Lu+p,—(u+p) Should be evaluated & before multiplication wittf.

Weil Pairing and the Functionsf, p
Let P,Q € E[m], and we want to compuig,(P, Q).
Choose a point not equal to:P,—Q,Q—P, 0.

_ fm,Q(T) fm,P(Q—T)
We haveen(P,Q) = fup(—T) fno(PET) "

m fm,P(Q)
fmo(P)
Miller’s algorithm for computing, p(Q) can be used.

If P+ Q, then we also haven(P,Q) = (—1)

All these invocations of Miller’s algorithm hawe= m.
So a single double-and-add loop suffices.

For efficiency, one may avoid the division operations in Miller’s loop by
separately maintaining polynomial expressions for the numerator and t
denominator of . After the loop terminates, a single division is made.

Miller's Algorithm for Computing en(P, Q)

If (P=Q), return 1.
Letm= (1Ims_;...Mymp)2 be the binary representation mwf
Initialize foum= fgen=1,U = P, andV = Q.
Fori=s—1s-2,...,1 0, repeat:
/* Doubling */
Update numeratdium= 2,1 Lu.u(Q) x Lav—av(P).
Update denominatden= f2,,x Lou —2u(Q) x Ly v(P).
UpdateU = 2U andV = 2V.
/* Conditional adding */
If (m = 1), then execute the following three lines:
Update numeratdpym=frumx Lu p(Q) x Lv+Q7,(V+Q)(P).
Update denominatdgen=fagenx Lyp,—(u+p) (Q) X Lv,q(P)-
UpdateU =U +PandV =V +Q.
/* End of for loop */
Return(—1)fnum/fden

Weil Pairing: Example

TakeE : Y2 = X3 + 3X defined oveff 3.

This is supersingular withE(F43)| = 44, andE(F43) = Zoo ® Zo.
Takem= 11. The embedding degree for this choic& is 2.
We work in the fieldF,5 = F1g49= F43(8), where6? +1 = 0.

]Fj132 contains all the 11-th roots of unity: 1421360, 2+ 300, 7+ 96,
74340, 11+ 30, 11+ 4006, 18+ 86, 18-+ 350, 26+ 200, and 26+ 236.

E(Fagy) = Z44® Zag containsE[11] = Z11 P Z11.
P=(1,2) andQ = (—1,260) generaté=[11].

Let us computen(P,Q) for P:=P = (1,2) andQ:=4P+5Q =
(15+226,5+1486).

11= (1011),.
Initialization: f = faym/fgen=1/1,U =P, andV = Q.

Miller Iteration for | =2

Doubling
- | y+20x+21
N =Lyu/La—2u = X130
X+ (36+2160)

e =Lavav/bvy = a5 amgix Tt (26+ 140)
A(Q) 34+376

A(P) ~ 2846

U = 2P = (11,26) andV = 2Q = (7+ 220,28+ 76)

Addition

f=f%x

mp = 0, so addition is skipped.

Miller Iterationfor i =1
Doubling
y+31x+20

X+7

X+ (2+260

Ne=lav—av/Lvy = y+ (18+ 2(29)x+ (2)9+ 20)
A(Q) 124156
No(P) — 25+186
U =4P = (36,18) andV = 4Q = (41+176,6+66)
Addition

N =Luyu/Lau—2u =

f=f2x

y+2x+39
X+ 33
X+ (41+ 86
Ne=Lvio-vio/bve = yipey 9(e)x+ (3)1+ 96)
A1 (Q) 25+ 156
No(P) 284200
U =5P = (10,16) andV = 5Q = (2+ 356,30+ 180)

A =Lup/Lusp_(usp) =

f=f2x

Miller Iteration for i =20
Doubling
y+ 8x+ 33

X+ 42

X+ (28+ 216

No=Lav-av/lvv = Grmgy 1559)x+ (13+ 160)
A (Q) 104226
Ao(P) ~ 1242860
U = 10P = (1,41) andV = 10Q = (15+ 226,38+ 296)
Addition

N =Lyu/Lav—2u =

f=f2x

X+42
N =Lup/Luip_(usp) = 1

1
Na=Lvio-v+o/bve = 285 210)

Ao(P) ~ 18+320

U=11P=00andV=11Q=0

Weil Pairing: Example

126

m) =26+ 200. This is indeed an

We haveen(P,Q) = (—)11<
11-th root of unity.

If P,Q are linearly dependent, we hasig(P,Q) =
The Miller loop may encounter @ivision by zeraerror in this case.

Use the alternative formula

fnQ(T) fmp(Q—T)
fnp(=T) fmo(P+T)

em(P,Q) =

for a randomly chosen poifit.

Tate Pairing

Let E be an elliptic curve defined ovér = Fq with p = charK.
Let mbe a positive integer coprime o

Letk = ordn(q) (theembedding degreg andL = F.

LetE[m = {P € E(K) |[mP= &}, andmE(L) = {mP| P € E(L)}.
Let (L*)™ = {a™|ac L*} be the set ofm-th powers in_*.

Let P be a point inE[m]|, andQ a point inE(L).

TheTate pairing is a function
(, dm: E[m x E(L)/mE(L) — L*/(L7)™

that maps a pair of poin8, Q to (P, Q)m.
Q should be regarded as a pointgfL) /mE(L).

The value of(P,Q)n, is unique up to multiplication by am-th power of a
non-zero element df, that is,(P, Q)m is unique inL* /(L*)™.

Properties of Tate Pairing
Bilinearity:

<P+Q7 R>m = <Pa R>m<Q> R>m:

<P’Q+R>m = <PaQ>m<P7 R>m
Non-degeneracy:For everyP € E[m], P # &, there exist® with
(P,Q)m # 1. For evernyQ ¢ mE(L), there exist$ € E[m| with (P,Q), # 1.
The Weil pairing is related to the Tate pairing as

P = (g

up tom-th powers.

Letk = ordn(q) be the embedding degree. The Tate pairing can be mac
unique by exponentiation to the poweK — 1) /m:

R a1

&n(P,Q) = ((P,Q)m) ™
én(P,Q) is called thereduced Tate pairing. The reduced pairing
continues to exhibit bilinearity and non-degeneracy.

Computing the Tate Pairing

Take a poinT #P,—-Q,P—-Q, 0.

fm T
We have(P,Q)m = ’f:](S(_IJf))

If P andQ are linearly independent, théR, Q)m = fm p(Q).
Miller’s algorithm is used to computé®, Q) m.
A single double-and-add loop suffices.

For efficiency, the numerator and the denominatdrimay be updated
separately. After the loop, a single division is made.

If the reduced pairing is desired, theffiral exponentiation to the power
(- 1)/mis made on the value returned by Miller’s algorithm.

Weil vs. Tate Pairing

The Miller loop for Tate pairing is more efficient than that for Weil pairing
The reduced Tate pairing demands an extra exponentiation.

Letk = ordn(q) be the embedding degree, ane- F.

Tate pairing requires working in the field

Let L’ be the field obtained by adjoining tothe coordinates of all the
points of E[m].

Weil pairing requires working in the field'.

L’ is potentially much larger than

Special casemis a prime divisor of E(K)| with m)gandm/(q—1).
Then,L’ = L. So it suffices to work in the field only.

For cryptographic applications, Tate pairing is used more often that We
pairing.

One takedq with |g| about 500—2000 bits arld< 12. Larger embedding
degrees are impractical for implementation.

Distortion Maps

Let mbe a prime divisor ofE(K)|.
Let P be a generator of a subgro@of E(K) of orderm.
Goal: To define a pairing of the points i@.

If k=1 (thatis,L = K), then(P,P)m # 1.

Bad news:If k> 1, then(P,P)y, = 1.
But then, by bilinearity{Q,Q)n =1 for allQ,Q € G.

A way out: If k>1andQ € L is linearly independent d? (that is,Q ¢ G),
then(P,Q)m # 1.

Let@: E(L) — E(L) be an endomorphism &f(L) with ¢(P) ¢ G.

@ is called adistortion map.

Define thedistorted Tate pairing of P,Q € G as(P, ¢(Q))m.
Since@(P) is linearly independent d?, we have(P, ¢(P))m # 1.
Sinceg is an endomorphism, bilinearity is preserved.

Symmetry: We have(Q, (Q'))m= (Q, 9(Q))mfor all Q,qQ € G.
Distortion maps exist only for supersingular curves.

Twists
Let E be defined by the short Weierstrass equatdr= X3+ aX+b.
Letd > 2, andv € Fg ad-th power non-residue.

Consider the curve’ : Y2 = X3+ v#/daX+v®/9b (defined over).
If d= 2, thenE' is defined oveFy itself.
E' is called awist of E of degreed.

E andE' are isomorphic oveF . An explicitisomorphism is given by the
map@ : E' — E taking (h,k) — (v-2/9h,v-3/9k).

Letmbe a prime divisor ofE(Fq)|, G a subgroup of ordemin E(F), and
G’ a subgroup of ordenin E'(Fy). LetP,P’ be generators ¢ andG'.
Suppose thapy(P’) is linearly independent d®.

Ford = 2 (quadratic twist), a natural choice i& C E(Fq) and
G CE/(Fg).

Define a pairing of point® € G andQ’ € G’ as(Q, @ (Q))m.
This is called thewisted Tate pairing.

Pairing-Friendly Curves

Requirement for efficient computation: Small embedding degréde
For general curves is quite high (k| ~ |m|).
Only some specific types of curves qualify as pairing-friendly.
Supersingular curves

By Hasse’s TheoremE(Fq)| = g+ 1 —twith |t| < 2,/4.

If p|t, we callE asupersingular curve

Curves of the formy? +aY = X3+ bX+ c are supersingular over fields of
characteristic 2.

Supersingular curves have small embedding degrees. Thg@ossibilities are
1,2,3,4,6.

If Fqis a prime field withq > 5, the only possibility ik = 2.
Non-supersingular curves are calledlinary curves.

It is difficult to locate ordinary curves with small embedglidegrees.

Supersingular Curves: Examples

E: Y2 = X3+ a defined ovelf, with an odd primep = 2 (mod 3.
Embedding degre& = 2.

E: Y2 = X3+ aX defined oveff, with an odd primep = 3 (mod 4).
Embedding degre& = 2.

E:Y?+Y=X3+X+awitha=0 or 1 defined oveF, with oddd.
Embedding degredk = 4.

E: Y2 =X3—- X1 defined oveF with 2,3 f d.
Embedding degredk = 6.

E: Y2 = X3+ adefined over, with a primep = 5 (mod 6 and with
a € F asquare but not a cube.
Embedding degred& = 3.

Let E be a supersingular curve defined o¥gmwith p > 5. ThenE as a
curve ovelF» with evenn is again supersingular.
Embedding degreé = 1.

1
2
3
4
5

How to Find Ordinary Pairing-Friendly Curves

Let k be a positive integer, anla small positive square-free integer.

Search for integer-valued polynomia(s), m(x),q(X) € Q[x] to represent a
family of elliptic curves of embedding degr&eand discriminanf\. The
triple (t,m, g) should satisfy the following:

g(x) = p(x)" for somen € N andp(x) € Q[x] representing primes.

m(x) is irreducible with a positive leading coefficient.

m(x)[a(x) +1—t(x).

m(Xx)| Pk (t(x) — 1), wheredy is thek-th cyclotomic polynomial.

There are infinitely many intege(s, y) satisfyingAy? = 4q(x) — t(x)2.

If yin Condition 5 can be parametrized by a polynonyia) € Q[x], the
family is calledcompleteg otherwise it is calledparse

For obtaining ordinary curves, we require ggtk), m(x)) = 1.

Thecomplex multiplication method is used to obtain specific examples
elliptic curvesk overFq with E(Fq) having a subgroup of orden.

Some Families of Ordinary Pairing-Friendly Curves

Some sparse families of ordinary pairing-friendly curves are:
MNT (Miyaji—-Nakabayashi—Takano) curves: These are curves of prime
orders with embedding degrees 3, 4 or 6.
Freeman curves:These curves have embedding degree 10.

Some complete families of ordinary pairing-friendly curves are:
BN (Barreto—Naehrig) curves: These curves have embedding degree 12 anc
discriminant 3.
SB (Scott—-Barreto) curves
BLS (Barreto—Lynn—Scott) curves
BW (Brezing—Weng) curves

Efficient Implementations of Pairing

Denominator elimination: Applicable to Tate pairing.

Let the embedding degrde= 2d be even.

fnp(Q) is computed by Miller's algorithm, whei® = (h,k) with h € Fg.
The denominatorkay 2y (Q) andLy.p —u+p)(Q) correspond to vertical
lines, evaluate to elements]Eéd, and can be discarded.

The final exponentiation guarantees correct computation of Tate pairin

BMX (Blake-Murty-Xu) refinements use 2-bit windows in Miller’s loop.

Loop reduction: With clever modifications to Tate pairing, the number o
iterations in the Miller loop can be substantially reduced.
A typical reduction is by a factor of 2.
Examples
n and nt pairings (for supersingular curves)
Ate pairing (for ordinary curves)
R-ate pairing

PART 5
PAIRING-BASED CRYPTOGRAPHY

Intractable Problems (Contd)

Let G be a finite cyclic additive group with a generaRyrandG’ a finite
cyclic multiplicative group. We assume tH&| =r is a prime. Suppose
thate: G x G — G’ is an efficiently computable pairing.

Decisional Diffie—Hellman Problem (DDHP):GivenaP,bP, zP ¢ G (but
nota, b andz), decide whethezP= abP, that is, whether = ab (modr).

The existence of the pairing functi@makes the DDHP 65 easy. In fact,
z=ab(modr) if and only if e(aP,bP) = e(P,zP). In this case is called
a Gap Diffie—Hellman (GDH) group.

In a GDH group, giveraP, bP, it is easy to compute(P, P)2° = e(aP, bP).

The Problems That Are Intractable in Presence of
Pairing
Bilinear Diffie—Hellman Problem (BDHP): GivenP,aP,bP,cP € G,
P £ 0, computee(P, P)a°C,
Decisional Bilinear Diffie—Hellman Problem (DBDHP): Given
P,aP,bP,cP,zPc G, P # 0, decide whetheg(P, P)2°° = e(P, P)?, that is,
z= abc(modr).
Bilinear Diffie—Hellman Assumption: The pairing map does not make
these problems computationally easy.
However, we require the DLP/DHP to be difficult@
If one ofa, b, ¢ is known,e(P, P)2* = g(bP, cP)2 = e(aP, cP) = e(aP,bP)¢ can
be computed.
If one of bcP, acP,abPis known,e(P, P)2°¢ = e(aP, bcP) = e(bP,acP) =
e(cP,abP) can be computed.
Example: Elliptic-curve groups with Weil pairing.

Extensions possible fa@: G; x G, — G3 (Co-BDHP, Co-DBDHP).

Identity-Based Encryption (IBE)

Original concept proposed by Shamir in 1984.
The first realization proposed in 2001 by Boneh and Franklin.

The Boneh—Franklin IBE uses pairing.

Conventional encryption and signature schemes (like RSA, DSA) use
public-key certificates.

Every use of a public key requires validating the public key using a
certificate from a truste@ertification Authority (CA) .

An identity-based scheme uses a public identity (like e-mail ID) of an
entity as the public key, which does not require validation.

A trusted authority is still needed askay Generation Center (KGC) or
Public Key Generator (PKG).

The KGC is needed only once during the registration of an entity.

Boneh—Franklin IBE: Setup Phase

Domain parameters

GroupsG, G’ of prime order

A generatoP of G

An efficiently computable bilinear mag: Gx G — G
Keys of PKG

Master Secret Key (MSK): seRr Z;

Public Key: Ppkg = sP.
Hash functions

Hi:{0,1}* - G

H, : G’ — {0,1}" for some suitabl@
r,G,G, e P,Ppkg,n,Hi,H, are made public
sis kept secret

s cannot be retrieved frompkg = sP(DLP assumption)

Boneh—Franklin IBE: Key-generation Phase

The KGC sets up keys for an entity Bob.
Bob’s public identity:bob@. b. cr
Bob’s public key:Pgop=Hi(bob@. b. cr).
Bob’s private key:Dgop = SPsob-

The KGC transfer®gqn to Bob securely.

Anybody can comput@ggp.

Bob cannot computsfrom Dggp, (DLP assumption).

Boneh—Franklin IBE: Encryption Phase

Alice plans to send an-bit messagé to Bob.

Alice computes Bob’s hashed ident®gq, = Hi(bob@. b. cr) € G.
Alice computegy = e(Pgop, Prkc) € G.

Alice chooses a random element Z; .

Alice computes the ciphertegt = (aP,M & Hy(g?)) € G x {0,1}".

ais the session secret.
H»(g?) is used as a mask to hide the message.
Anybody can send messages to Bob.

No certificates are required.

Boneh—Franklin IBE: Decryption Phase
Bob plans decrypts a cipherte@t= (U,V) € G x {0,1}".
Bob computes the elemegt= e(Dgop, U) € G.

Bob computes the mad#,(g').

Bob retrieves the messalye=V @ H,(g).

Correctness
g = €(Dgob, U) = €(Dgob, aP) = €(SPsob, aP) = €(Pgop, P)%* =
e(Pgob, SP)? = €(Pgob, Prkc)?® = g7

Security

An eavesdropper know’, U = aP, Pgo, = bP andPpkg = sP.

The mask is(P, P)2bs.

Intractability of the BDHP guarantees security against eavesdroppers.
Alice knowsa and can compute the mask.

Bob knowsbsPand can compute the mask.

SOK Two-Party Key Agreement

Proposed by Sakai, Ohgishi and Kasahara (2000).
Setup phase:As in Boneh-Franklin IBEK(,G,G', P, s, Ppka, €,n,H1)
Key-generation phase:
Alice: Public keyPajice =Hz(al i ce@. b. cr), private keyDajice = SPalice-
Bob: Public keyPgon = Hi(bob@. b. cr), private keyDgop = SPsob.
Key-agreement phase:

Alice computesSyjice = €(Daiice, Pgob)-
Bob computesson = €(Paiice, DBob) -

Correctness: Syjice = €(Daiice, PBob) = €(SPalice, PBob) = €(Paiice; Peob)® =
e(PAIicea SPBob) = e(PAIice, DBob) = Sob

Security: P, Ppjice = aP, Pgop = bP andPpkg = sPare known to
everybody. The task is to compuaéP, P)abs. Alice knowsDjice = asPand
Bob knowsDgp = bsP, so they can computg P, P)2°S. An eavesdropper
cannot compute this quantity (BDHP assumption).

One-Round Three-Party Key Agreement

Proposed by Joux (2004).
Setup phase:Same as before (G,G', P, €).

Key-agreement phase:
Alice chooses €r Z; and broadcas@P to Bob and Carol.
Bob chooseb €r Z; and broadcastsP to Alice and Carol.
Carol chooses €r Z; and broadcastsP to Alice and Bob.
Alice computese(bP,cP) = (P, P)2,
Bob computeg(aP, cP)® = e(P, P)a,
Carol computeg(aP,bP)¢ = e(P, P)a,

Security: A passive eavesdropper knoRsaP, bP,cP only and cannot
computee(P, P)2¢ (BDHP assumption).

Paterson’s Identity-Based Signhatures

First IBS scheme was proposed and realized by Shamir (1984).
Many pairing-based IBS schemes are known.
Paterson’s IBS scheme (2002) is an adaptation of EIGamal signatures.

Setup phase:Domain parametens G,G',P,eand PKG’s keys and
Ppkc = sPare as earlier. Hash functiond; = {0,1}* — G,
Hy:{0,1}* — Z, andHs3: G — Z.
Key-generation phase:

Bob’s public key isPgop = Hi(bob@. b. cr)

Bob’s private key iDgop = SPsob

Paterson’s Identity-Based Signatures (Contd)
Signing: Bob’s signature on messadeis (S, T), where:

d/ ER Zr,
s = dP,
T = d Y(Hy(M)P—Hs3(S)Dgop).

Verification: Bob’s signaturdS T) onM is verified if and only if
e(P,P)H2M) — ¢(S T)e(Ppub, Paob) 2.
Correctness:Hz(M)P = d'T + H3(S)Dgop = d'T + H3z(S)SPsop, SO

)

e(P,P)2M) — (P, Hy(M)P) = e(P,d'T + H3(S)sPsob)
= ¢(P,d'T)e(P,H3(S)sPsob) = €(d'P, T)e(sP, Pgop) ¥
= &(S T)e(Ppub, Paon) ™.

Security: Similar to EIGamal signatures.

BLS Short Signatures

Proposed by Boneh, Lynn and Shacham (2004).
Uses pairing, but not identity-based.
Smaller signatures than DSA or ECDSA at the same security level.
Setup phase:
GroupsGs, Gy, G3 of prime order (with G1 # Gp)
Pairing mape: G; x G, — G3
A generatoQ of G,
Hash functiorH : {0,1}* — G
Key-generation phase:
Bob’s private keyd er Z;,
Bob’s public key:Y = dQ e G,
Notes:

Does not involve a PKG
G; = G, may fail to give same security as DSA

BLS Short Signatures (Contd)

Signing: Bob’s signature oM is S= dH(M).
Verification: Check whethee(S Q) =e(H(M),Y).
Correctness: e(S,Q) = e(dH(M),Q) = e(H(M),dQ) = e(H(M),Y).
Security:

Signature verification is easy, since the Co-DDHP is eas®io6,.

Signature forging is difficult, since the Co-DHP is difficult

Any pair of gap Diffie—Hellman (GDH) groupS;, G, can be used to implemen
the BLS scheme.

References

Blake, Seroussi and Sma#gdvances in Elliptic Curve Cryptograph@€ambridge, 2005.
Boneh and Franklindentity Based Encryption from the Weil Pairin@rypto 2001.
Boneh, Lynn and Shachar8hort Signatures from the Weil Pairing of Cryptology, 2004.
Das,Computational Number Thear€RC Press, 2013.

Charlap and Robbingyn Elementary Introduction to Elliptic Curve€RD Report, 1988.
Charlap and ColeyAn Elementary Introduction to Elliptic Curves ICCR Report, 1990.

Cohen, Frey, Avanzi, Doche, Lange, Nguyen and Vercautétandbook of Elliptic and Hyperelliptic
Curve CryptographyCRC Press, 2006.

EngeElliptic Curves and Their Applications to Cryptographgluwer, 1999.

Freeman, Scott and Tesk&e Taxonomy of &ring-Friendly Elliptic Curves JI of Cryptology, 2010.
Hankerson, Menezes and VanstoGejde to Elliptic Curve Cryptographyspringer, 2004.
Joux,A One-Round Protocol for Tripartite Diffie—HellmaANTS-4, 2004.

Martin, Introduction to Identity-Based EncryptipArtech House, 2008.

Miller, The Weil Pairing, and Its Efficient Calculatipdl of Cryptology, 2004.

PatersonlD-Based Signatures from Pairings on Elliptic Cury&ectronics Letters, 2002.

Sakai, Ohgishi and Kasahafaryptosystems Based on Pairir§CIS 2000.

Thanks for Your Attention!

For future:abhij@cse.iitkgp.ernet.in

PART 6
ECDSA BATCH VERIFICATION

ECDSA Reuvisited: Parameters

We work over the prime field.

E:y? =x3+ax+bis an elliptic curve defined oVéy.
Assume thah = |E(Fq)| is prime.

P is an arbitrary point of ordemin E(Fq).
In-q-1/<2,/4.

If n < g, an integer reduced modutomay have two modulqg values. The
fraction of such integers is very small. So we ignore this.

Signer’s permanent key
Private keyd €r Z.
Public keyQ = dP.
DL assumption: It is infeasible to compuiérom P andQ.

ECDSA Signatures Revisited

Signature generation
k er [1,n— 1] (the session key)
R=kP
r =x(R) (modn)
s=k Y(m+dr) (modn), wherem = H(M)
(M,r,s) is the signed message

Signature verification
w=s"1(modn)
u=mw(modn)
v =rw (modn)
R=uP+vQe E(Fy)
Accept if and only ifx(R) =r (modn)

ECDSA Signatures: Examples

For illustration, we work with an artificially small example.
g=991

E : y? = x3+x+ 23 defined oveFgg;

n=|E(Fgg1)| =997

P = (1,5) € E(Fgg1) is a point of order 997

Private keyd = 737
Public keyQ = dP = (272 437)

ECDSA Signatures: Examples

Example 1 Example 2 Example 3
[m =123 [m, =561 [mg=288]
Signature generation
k; =523 ko = 755 ks =593
Ry =k P = (476,617 Ry = kP = (183212 Rs = k3P = (149,56)
r =476 rp =183 rs =149
s1 =549 s =528 s3 =569
Signature verification
w =5 1=385 Wy =5, =338 Wy =s;1 =198
u; = mw; = 496 Uy = mpw, = 188 Uz = mgws = 195
Vi =TI1Wi; = 809 Vo =To2Wo = 40 V3 =TI3W3 = 589
Ry =wP+viQ=(476617) | Ry = uP+v,Q = (183 212) | R3 = uzP+v3Q = (149,56)

Signature generation needs one scalar multiplication.
Signature verification needs two scalar multiplications.
Practical improvements:

Use double scalar multiplication.

P is a system-wide fixed parameter.
If Qis fixed too, use double fixed-base scalar multiplication.

Batch Verification

Verify multiple signatures together at a time less than the total individue
verification time

Applicable when most of the available signatures are valid

Useful in resource-constrained and/or real-time systems

Security issue: One or more invalid signatures in a batch may go unnof
The attacker may inject carefully crafted forged signatures in a batch

Safeguards needed against such attacks

To verify a batch ot ECDSA signature$ri,si), (r2,2), .., (ft,).
R = (%,¥i), sori =X (modn). We assume thag = r; for all i.

Qs fixed in a batch but varies across different batches, so precommsta
based orQ may be ineffective, particularly for small batches

The Problem in ECDSA Batch Verification

Thei-th verification equation i® = uP+v;Q.

These equations can be combined as

This boils down to onlytwo scalar multiplication for a batch of any size
But how do we compute the left hand si§ig ; Ri?
ECDSA signatures present only theoordinates; = ri = x(R)).

ECDSA': A non-standard variant of ECDSA in which the entire poiRts
are included (instead of only) in the signatures.

For ECDSA, the above algorithm works without any problem.

A Naive Approach to Solve the Problem

y2 = x3+ax +b (modq).

yi is a modular square root of the right hand side.
Square-root computations are costly.

In general, there are two square rootscdf- ax + b.

Try all of the 2 combinations of theignsof the square roots. If any of the
combinations satisfies the verification equation, accept.

Checking 2-1 combinations actually suffices. There ate'Zossibilities
of thex-coordinates oftR; £ Ry +--- + R;.

ECDSA?: A non-standard variant of ECDSA in which an extra bit is
appended to an ECDSA signature for identifying the correct squate roc

For ECDSA, only one of the 2combinations need to be checked.

The naive approach is usually the fastest batch-verification algorithm fc
ECDSA.

The Naive Algorithm: Example

Consider the three signaturgs76,549), (183 528), (149,569).

The square roots of 476- 476+ 23 are 374617. TakeR; = (476,374).
The square roots of 183- 183+ 23 are 212779. TakeR, = (183 212).
The square roots of 149- 149+ 23 are 56935. TakeRs = (149 56).
The right hand side of the verification equatior{389,347).

We have the following elliptic-curve sums:

Ri+Ry+Rs = (117, 895).
R; + Ry, — R3 = (342 505).
R; — R+ R3 = (990 608).
R; — Ry — R3 = (539,644) = — (539 347).

Therefore—R; + Ry + Rz = (539 347), and the batch is verified.

What about Standard ECDSA Signatures?

To avoid the time fot modular square-root computations
Replace this by something faster
Eliminate theunknown ycoordinatey; = y(R))

Three elimination possibilities

Linearization
Algebraic elimination
Use of summation polynomials

The first two methods are based on symbolic manipulations, where
Y1,Y2, ..., are treated as symbols satisfyiyfg= ¢ 4 ax +b (modq)

The third method is based on resultant computations
Analyses and experiments reveal significant practical improvements

Open question: Can we make elimination faster #é#) time?

Algorithm S1: Elimination by Linearization

The verification equation i§{_; R = (SI_; u) P+ (311 i) Q.
Stage 1:Compute the right hand side numerically by a double scalar
multiplication (fixed-base if applicable). Let this point te, 3).

Stage 2:Compute the left hand side symbolically, and express the
symbolic sum as a pajRy, Ry) of polynomials iny1,y», ..., y. The largest
yi-degree in botlR, andRy is 1 (sincey? can be substituted by the explicit
valuex,3 + ax + b). Moreover,R, consists non-zero terms of even total
degrees, ang consists of non-zero terms of odd total degrees.

Stage 3:We haveR(y1,Y2,...,Y¥t) = a. By successively squaring this
equation or multiplying by even-degree monomials, generate a system
equations, each linear with respect to the even-degree monomials.

Stage 4:Solve the system to get the values of all even-degree monomi:
Stage 5:UseRy(y1,Yo,...,Yt) = B to solve for individualy; values.

Stage 6:Check whethey? = x3+ ax + b (modq) for all i.

Algorithm S1: Example

The verification equation ig176,y1) + (183 y») 4 (149 y3) = (539 ,347).
First computehs, k3) = (476,y1) + (183 y»):
A= (yz — yl)/(183— 476) = 115y; +876y,.
A2 = 3422 + 3071y, + 3423 = 3071y, + 478.
hs = A2 X1 — X2 = 3071y> + 810.
ks = A (X1 — hg) — y1 = 371y3y> + 620y1y5 + 238y1 + 752, = 580y, + 42y>.
Then computéhy, kq) = (hs, k3) + (149,y3):
A = (y3—k3)/(149—hg) = (411y; + 949y, +y3)/(684y1y, +330)
= (411y; + 949, +y3)(684y1y> — 330)/ (684y2y2 — 33(%)
= 9871Yoy3 + 904y; + 57y, + 906y3.
hs = A2 — hg — X3 = 16y2y3y3 + 696y2y2y3 + 6322 + 535/1y2%y3
+ 680y1Y2Y3 + 676y1Y2 + 916y1y3 + 276y3 + 220y + 2883 + 32
= 524y1y, + 3321y3 + 58y,y3 + 497.
ks = A (hg —ha) — ks = 342y1y,y3 + 2271 + 491y, + 1523
Thus, we have:
524y1y> + 332y1y3 + 58yoy3 + 497 = 539.
3421Yoy3 + 2271 + 491y, + 1523 = 347.

Algorithm S1: Example (Contd)

First equation: 52y + 332y1y3 + 58y»y3 = 82.

Generate the second equation:
Multiplying by y1y» gives 5242y2 + 3322y,ys + 58y1y3ys = 82y1Yo.
This simplifies to 949y, + 422y1y3 + 572,y3 = 158.

Generate the third equation:

Multiplying by y1ys gives 9492,y + 422y2y3 + 5721 y,y3 = 158y1ys.
This simplifies to 8%1y> + 833y1y3 + 847h,y3 = 445.

524 332 58 y1Y2 42
The linearized system iq. 949 422 572 viys | = | 158
82 833 847 Y2Yy3 445

The solution of this system g1y, = 983,y1y3 = 858,y,y3 = 971.

Algorithm S1: Example (Contd)

We also have 342Y,ys + 2271 + 491y, + 1523 = 347.

Multiply by y to get 3432y,y3 + 2272 + 491y1y, + 1521y3 = 347;.
Simplification gives 34y, = 43, thatisy; = 617.

Y2 = (Y1Y2)/y1 = 212.

y3 = (Y1y3)/y1 = 56.
Thereforey? = 145,y5 = 349, andy = 163.
Moreover, X3 + X1 + 23 = 145,53 + X + 23= 349, and + X3 + 23= 163.

Algorithm S1: Remarks

This is perhaps not too impressive.

This is too much computation.

We have to deal with all even-degree monomialgiitys, . .., ;.
There are 21 — 1 of them.

Solving the dense linearized system ne@d2) field operations.
But this is the beginning.

We at least have an understanding of the potentials of symbolic
computations.

Algorithm S1’: Reduction in Monomial Count

Need to reduce the number of monomials in the linearized system.

Numerically compute the right hand side of the batch-verification equat
Let this point be(a, 3).

Let T = [t/2]. Rewrite the verification equation as:

Sr-en-

t

i i= T+1

Compute both sides of the rewritten equation symbolically.
Linearize by successive squaring.

The variables in the linearized system are all even-degree square-fre
monomials iny1,Y»,...,Yr, and all square-free monomials in
Yr+1, Y42, Wt

DoesO(t%/?) field operations—still poorer than naive exhaustive search

Algorithm S1’: Example

Rewrite the verification equation as
(476,y1) + (183 y2) = (539,347) + (149, —v3).
Compute the left hand side 83s,ks) as in S1. We have:
hs = 3041y, + 810, and
ks = 580y1 + 42y5.
Compute the right hand side é%,ks):
A = (347+Yy3)/(539— 149) = 836y3+ 720.
A2 = (2x 836x 720)y3 + (836%y3 + 720%) = 766y3+ 741.
hy = A2 —539— 149= 766y3 + 53.
ks = 1(149— hy) +y3 = 801y3 + 4535 + 741= 4533 + 492.
Equate the two sides:

30712 + 810= 766y5 + 53.
580y, + 42y, = 4535 + 492.

Algorithm S1’: Example (Contd)

Now, we have two variablegy, andys.
First equation: 301y, +810= 766y3 + 53.

Second equation: Square the first equation to get
8491y, + 768= 925/3 + 645.

o (307 225\ (yiy» \ _ [234
The linearized system |s< 849 66 > < va > = < 868)

Solve this to gey1y, = 983 andyz = 56.

We also have 58Q + 42y, = 453y3+492. Multiply both sides by, to get
(4533 + 492)y; = 580y + 42y1Y,, that is,y; = 617.

Y2 = (Yiy2)/y1 = 212.

Algorithm S2: Algebraic Elimination

The verification equation i$!_; R = (S_; u) P+ (31, v) Q.
Stage 1:Compute the right hand sider, 3) numerically.

Stage 2:Compute the left hand side symbolically as a pair
(Re(Y1,Y2,-- -, Y1), Ry(Y1,¥2, ..., %t)) of polynomials with square-free
monomials.
Stage 3:Setp=R,—a. Fori=1,2,....t, repeat:

Write Q= U(Yi+17Yi+27 s ,Yt) +YiV(Yi+17Yi+2a S 7Yt)-

Set@to (U—yiv)Q = u? +y2v2,

Substitute aly? forj =i,i+1,...,t.

Accept the batch if and only ip is reduced to zero.

Algorithm S2: Example

Consider the same examg76.y1) + (183 y2) + (149 y3) = (539 347).

As in Algorithm S1, the left hand side has tkeoordinate
524y,y, + 332y1y3 + 58yoy3 + 497.

Setg = 524y1y, + 3321y3 + 58y2y3 + 497 539=
524y1Y + 3321y -+ 58yoy3 + 949 = (524, + 3323)y1 + (58y2y3 + 497).

Updateq to (524y, + 332y3)2y2 — (58y2y3 +497)% =
600y3y2 + 95y2 + 8092y + 623y3 + 218= 809y,y3 + 324.

Updateq to (8093)%y3 — 324 = 0.

Algorithm S2’: Faster Variant of S2

Compute(a, B8) as in Algorithm S2.

Let T = [t/2]. Rewrite the verification equation as

SR =(a,B)-3i_ruR.

Compute the two sides of the rewritten equation symbolically. Let
RY (Y1,¥2,...,Yr) and R? (Yr+1,Yr+2-- -, Yt) be thex-coordinates of the

two sides.
Setp= R(l) — R&Z).
Eliminateys, o, ...,y from @ as in Algorithm S2.

Accept the batch if and only ip is reduced to zero.

Algorithm S2’: Example

Rewrite the verification equation as
(476y1) + (183 y2) = (539,347) + (149 —v3).

Symbolic computation gives thecoordinates of the two sides as
3071y, + 810 and 76@; + 53.

Start with

@ = (30A1y, +810) — (766y5 + 53) = (3072)y1 + (2255 + 757).
Updateg to
(30%2)%yF — (225y3+ 757)? = 215/5 + 90R3 + 254y3 + 740= 254y3 + 641

Updateg to 254y2 — 6412 = 0.

Algorithms S2 and S2: Remarks

Elimination stage is made efficient.
Much faster than Algorithms S1 and’'S1
Practical for batch sizes up to six or seven.

Theoretically poorer than naive exhaustive search by a factdr of
(Algorithm S is poorer by a factor of'22.)

Algorithm SP

This achieves a running time @f(2') field operations.

Summation polynomials (introduced by Semaev) are recursively define

fa(x1,%2) = X1—Xe,
fa(xe, X2, X3) = (X1 —X2)*Xa® — 2((X1 +X2) (XaX2 + @) + 20)Xg +
((x1x2 — @)% — 4b(x1 +X2)),
fr(X1, X2, ..., %) = Res(frow(X1,. .., X—k-1, T)sfcr2(Xt—ks -+ %, T))
fort >4 and for anyk in the range K k<t—3.

Reg is the resultant of two polynomials with respect to the varidble

LetXq,Xo, ..., X € Fq. Then,fi(xy,X2,...,%) = 0 if and only if there exist
Y1,Y2,..., Yt € Fp such thatx;,y;) lie on the curve forall = 1,2,...,t, and
we have the following sum in the elliptic-curve groBgF,):

(X1, 1) + (X2,¥2) + -+ (X,)0) = 0.

Algorithm SP (Contd)
Write the verification equation g8_, (%, Vi) + (a,—B) = 0.

This is true if and only iff1(X1,X2,. .., %, a) = 0.

Recursion tree for= 5:

fo (X1, X2, X3, X4, X5, @)
— f4(X1,X2,X3,T)
— f3(X1,X2,T1)
— f3(x3, T, T1)
— f4(X4,%5,0,T)
— f3(X4, %5, T2)
— f3(a,T,Ty)

Practical for batch sizes up to ten.
Replace the last resultant calculation by a gcd computation for practica
benefits.

Algorithm SP: Example

Write the verification equation as
(476y1) + (183 y2) + (149y3) + (539 —347) = 0.
Compute

f4(476,183 149,539
— Res(f3(476183T),f3(149,539,T))
= Res (6237245697 + 114 477T% 4 970T + 658)
= 0.

In fact, gcd 62372 + 56T + 114,477T2 + 970T + 658) = T -+ 655.

Security Issues
An attacker capable of forging ECDSAor ECDSA’) batches can trivially
forge ECDSA batches too.

Suppose that the attacker is capable of forging ECDSA batches that pe
our batch-verification algorithms.

The attacker can uniquely reconstruct the missiogordinates.
The naive, S1 and Salgorithms indeed do so.

S2 and S2can be extended to do the same task.

For small batch sizes, these algorithms are feasible.

So the attacker can forge ECDSfor ECDSAY) batches.

Our algorithms do not compromise security—relative to straightforwarc
ECDSA" batch verification.

The security concerns do not end here.

Need for Randomization

An attacker can injedt faulty signatures in a batch of site
The attacker needs to arrange the following:
Ri+Ro+---+Rc=0.
mys; 4+ mpsy t -+ mes t =0 (modn).
riS T +128 + -+ 1§t =0 (modn).

The effect of thes& forged signatures on both sides of the verification
equation is zero.

For example, the attacker may take = mp, r{ =r, ands; = —s,. This
corresponds t®, = —R;.

In general, the attacker first chood®sRy, ..., Ry, and fixex1,ro, ..., k.
The attacker then chooses, my, ..., M. The attacker finally arranges an
solution of the above two modulocongruences fos; b, s, %, ... st

Randomization destroys the above three relations with high probability

What is Randomization?

Choose random multiplief&,, &>, . .., & during batch verification.
Now, the attacker must arrange the following three relateopsori.
&R+ &R+ +&kRe= 0.
&imys 4+ Emps, t - Emis t = 0 (modn).
&risyt+ &0+ + &1t = 0 (modn).
If I-bit randomizers are used, the probability of a successful attacK.is 2

One can také = |g|/2 since square-root methods for solving the ECDLF
imply only this much security.

Another possibility:l = 128.

Randomization of ECDSA Batches

The verification equation now modifies to:

ZfiRi = <Z§iui> P+ (ZEM) Q.

The right hand side again poses no difficulty.

The left hand side appears to be irreparably affected, because enly th
x-coordinates oR; are available.

Rescue: Given only(R) and a multiplier§, thex-coordinatex({R) can be
uniquely determined anefficientlycomputed.

Replace the pointR; by &R, and run the batch-verification algorithms.
Now, the symboly; arey(&R;).

We need good algorithms to compuie R) from x(R) and§.

Montgomery Ladders Revisited
Suppose that(P;) = hy, X(P2) = hy andx(P1 — P2) = hs are known.
We can computés = x(P1 + P2) andhs = x(2P;) as:

hshg(hy —hp)? = (hihy —a)? — 4b(hy + hy).

4hg(h3+ah+b) = (h?—a)?2—8bh.

Montgomery ladder for computing {R):
Initialize x(S) := x(R) andx(T) := x(2R).
For(i=1-21-3,...,1,0){
If (& = 0), assignk(T) :=X(T + S) andx(S) := x(29),
else assigi(S) := x(T+S) andx(T) := x(2T).

}
Returnx(S)

Loop invarianceT = S+ R.

Montgomery Ladders: Example

TakeR = (476,y) and& = 97 = (1100001,.

Montgomery iterations:

Bit position | Bit value S T XS) X(T)
6 1 R 2R 476 467
5 1 3R 4R 676 544
4 0 6R 7R 679 441
3 0 1R 1R 875 447
2 0 2R 25R 218 200
1 0 48R 4R 962 740
0 1 97R 98R 514 140

Seminumeric Randomization

Let R= (r,y) with r known andy unknown.

Any non-zero multiplaiRof R can be expressed &8s, ky), whereh andk
are field elements fully determined byandu.

ForRitself, h=r andk = 1.

Let Py = (hy, kiy) andP, = (hy, koy) with P; # +P». Then,Ps = (hs, ksy):

ki—k2\? 5 ki — ko
hs = (r°4ar+b)—h; —hy, andkz = (hy —hg) — k.
hi—hy hi —hy

We haveP, = 2P; = (hg, kgy):

3hf+a 2 1 3h§+a hy —hg
h4_< 2ky ><r3+ar+b>_2hl’and<4_(2k)(r3+ar+b)_kl'

Represent the multiplgn, ky) of R by the pair(h, k) of field elements.

Seminumeric Randomization: Algorithm

Precompute the field elements+ar + b and(r3 +ar +b)~2.
Initialize S:= (r,1).
For(=1-21-3,...,1,0) {

AssignS:= 2Susing seminumeric doubling.

If (& = 1), assigrS:= S+ Rusing seminumeric addition.

}

ReturnS (or the first component ¢3).

This is slightly slower than scalar multiplication.

Seminumeric Randomization: Example

TakeR = (476y) andé = 97 = (1100002s.

Seminumeric iterations:

Bit position | Bit value Operation S h k
6 1 Init R 476 1
5 1 Double R 467 553
Add 3R 676 704
4 0 Double @& 679 348
3 0 Double 1R 875 82
2 0 Double 2&R 218 834
1 0 Double 4& 962 57
0 1 Double 9&®R 692 513
Add 97R 514 643

Comparison of Randomization Methods

Montgomery ladders use one doubling and one addition in each iteratic
The seminumeric method does addition only for one bits.

No effective windowed variant is known for Montgomery ladders.

The seminumeric method readily adapts to any windowed variant.
Montgomery ladders are robust against simple side-channel attacks.

Neither the Montgomery-ladder method nor the seminumeric method i
known to have an effective multiple-scalar-multiplication algorithm.

The seminumeric method is practically faster than Montgomery ladder:
except for very small randomizers.

Overheads of Randomization

Let SM be the time of one unwindowed full-length scalar multiplication.
Randomization requires roughiyhalf-length scalar multiplications.
4-NAF seminumeric half-length scalar multiplication tal{;eSM time.
Double scalar multiplication takegsSM time on an average.

Preparing each fixed-base precomputation table téI&M time.

Double fixed-base scalar multiplication tale}asM time on an average.

Let BV denote the batch-verification time.

Verification type Time for verifying signatures
Individual (no fixed-base) (4)sm
Individual (fixed-base) (5+3)SM
Batch without randomization (Z)SM+ BV

Batch with randomization (2+%)SM+ BV

Final Remarks

For ECDSA, it is preferable to use arbitrarily scalable naive batch
verification, particularly for large batch sizes.

For standard ECDSA, Algorithm SP with the seminumeric randomizatic
method gives the best practical performance fr10.

If enough memory is available, individual verification using fixed-base
double scalar multiplication may outperform batch verification except fc
small batch sizes.

It is fairly straightforward to adapt the batch-verification algorithms to
other types of curves, like Koblitz curves and Edwards curves.

It remains unsolved whether batch verification can be domédh) time.

No proposed batch-verification algorithm supplies speedup in the case
multiple signers, particularly when randomization is used.

References for Part 6

Sabyasachi Karati, Abhijit Das, Dipanwita RoychowdhurkiaByav Bellur, Debojyoti Bhattacharya
and Aravind lyerBatch Verification of ECDSA Signaturesth International Conference on Cryptolog
in Africa (AfricaCrypt 2012), Lecture Notes in Computer Sue #7374, pp 1-18, Jul 10-12, 2012,
Ifrane, Morocco.

Sabyasachi Karati, Abhijit Das, Dipanwita RoychowdhurigiByav Bellur, Debojyoti Bhattacharya
and Aravind lyerNew Algorithms for Batch Verification of Standard ECDSA 8&igres Journal of
Cryptographic Engineering, DOI: 10.1007/s13389-0142088Volume 4, Issue 4, pp 237-258,
Springer-Verlag, November 2014 (online publication datéd@y 2014).

Sabyasachi Karati and Abhijit DaBaster Batch Verification of Standard ECDSA Signatures gJsin
Summation Polynomigl42th International Conference on Applied Cryptography Bietwork
Security (ACNS 2014), Lecture Notes in Computer Science 8@j3 438-456, Jun 10-13, 2014,
Lausanne, Switzerland.

Sabyasachi Karati, Abhijit Das and Dipanwita Roychowdh&andomized Batch Verification of
Standard ECDSA Signaturesth International Conference on Security, Privacy, anglispl
Cryptography Engineering (SPACE 2014), Lecture Notes im@uater Science #8804, pp 237-255,
Oct 18-22, 2014, Pune, India.

Sabyasachi Karati and Abhijit DaBatch Verification of EDDSA Signaturekh International
Conference on Security, Privacy, and Applied Cryptographgineering (SPACE 2014), Lecture Note
in Computer Science #8804, pp 256-271, Oct 18-22, 2014, hudia,

Thanks for Your Attention!

For future:abhij@cse.iitkgp.ernet.in

