
Elliptic-Curve Cryptography (ECC)

Abhijit Das

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Talk presented in the
Second International Conference on Mathematics and Computing (ICMC 2015)
Haldia, 5–10 January, 2015

Elliptic Curves and Cryptography

Koblitz (1987) and Miller (1985) first recommended the use of
elliptic-curve groups (over finite fields) in cryptosystems.

Use of supersingular curves discarded after the proposal of the
Menezes–Okamoto–Vanstone (1993) or Frey–Rück (1994) attack.

ECDSA was proposed by Johnson and Menezes (1999) and adopted as a
digital signature standard.

Use of pairing in new protocols

Sakai–Ohgishi–Kasahara two-party key agreement (2000)

Boneh–Franklin identity-based encryption (2001)

Joux three-party key agreement (2004)

Boneh–Lynn–Shacham short signature scheme (2004)

Numerous other applications of pairing after this.

Supersingular curves are frequently used in these pairing-based protocols.

Organization of the Talk

Part 1: Arithmetic of Elliptic Curves (over Finite Fields)

Part 2: Classical Elliptic-Curve Cryptography

Part 3: Efficient Implementation

Part 4: Introduction to Pairing

Part 5: Pairing-Based Cryptography

Part 6: Sample Application—ECDSA Batch Verification

PART 1

ARITHMETIC OF ELLIPTIC CURVES

Elliptic Curves

Let K be a field.

An elliptic curve E overK is defined by theWeierstrass equation:

E : y2+a1xy+a3y= x3+a2x2+a4x+a6, ai ∈ K.

The curve should besmooth(no singularities).

Special forms

charK 6= 2,3: y2 = x3+ax+b, a,b∈ K.

charK = 3: y2 = x3+b2x2+b4x+b6, bi ∈ K.

charK = 2:

Non-supersingular or ordinary curve: y2+xy= x3+ax2+b, a,b∈ K.

Supersingular curve: y2+ay= x3+bx+c, a,b,c∈ K.

Real Elliptic Curves: Example

y y

x x

(a) y2 = x3−x+1 (b) y2 = x3−x

The Elliptic-Curve Group

Any (x,y) ∈ K2 satisfying the equation of an elliptic curveE is called a
K-rational point onE.

Point at infinity:

There is a single point at infinity onE, denoted byO.

This point cannot be visualized in the two-dimensional(x,y) plane.

The point exists in the projective plane.

E(K) is the set of all finiteK-rational points onE and the point at infinity.

An additive group structure can be defined onE(K).

O acts as the identity of the group.

The Opposite of a Point

(a) (b)

P

P

−P

−Q

Q

−P

Q

Ordinary Points Special Points

−Q

Addition of Two Points

Chord and tangent rule

P

Q

R

P

P+Q

(a) (b)

R

Q

P+Q

Doubling of a Point

Chord and tangent rule

2P

(a) (b)

R

P

P

R

P2

Addition and Doubling Formulas

Let P= (h1,k1) andQ= (h2,k2) be finite points.
Assume thatP+Q 6= O and 2P 6= O.
Let P+Q= (h3,k3) (Note thatP+Q= 2P if P= Q).

E : y2 = x3+ax+b

−P = (h1,−k1)

h3 = λ 2−h1−h2

k3 = λ (h1−h3)−k1, where

λ =















k2−k1
h2−h1

, if P 6= Q,

3h2
1+a
2k1

, if P= Q.

Addition and Doubling in Non-Supersingular or
Ordinary Curves

E : y2+xy= x3+ax2+b (with charK = 2).

−P = (h1,k1+h1),

h3 =



















(

k1+k2
h1+h2

)2
+ k1+k2

h1+h2
+h1+h2+a, if P 6= Q,

h2
1+

b
h2

1
, if P= Q,

k3 =















(

k1+k2
h1+h2

)

(h1+h3)+h3+k1, if P 6= Q,

h2
1+
(

h1+
k1
h1

+1
)

h3, if P= Q.

Addition and Doubling in Supersingular Curves

E : y2+ay= x3+bx+c (with charK = 2).

−P = (h1,k1+a),

h3 =



















(

k1+k2
h1+h2

)2
+h1+h2, if P 6= Q,

h4
1+b2

a2 , if P= Q,

k3 =



















(

k1+k2
h1+h2

)

(h1+h3)+k1+a, if P 6= Q,

(

h2
1+b
a

)

(h1+h3)+k1+a, if P= Q.

Size of the Elliptic-Curve Group

Let E be an elliptic curve defined overFq = Fpn.

Hasse’s Theorem:
|E(Fq)|= q+1− t, where−2

√
q6 t 6 2

√
q.

t is called thetrace of Frobeniusatq.

If t = 1, thenE is calledanomalous.

If p|t, thenE is calledsupersingular.

If p6 | t, thenE is callednon-supersingularor ordinary .

Let α ,β ∈ C satisfy 1− tx+qx2 = (1−αx)(1−βx). Then,
|E(Fqm)|= qm+1− (αm+β m).

Note: E(Fq) is not necessarily cyclic.

Example of Elliptic-Curve Arithmetic
E : y2 = x3−5x+1 defined overF17.
Take the finite pointsP= (3,8) andQ= (10,13) onE.

Opposite: −P= (3,9), and−Q= (10,4).

Point addition

The lineL joining P andQ has slopeλ ≡ 13−8
10−3 ≡ 8 (mod 17).

L has equationL : y= 8x+c. SinceL passes throughP, we havec= 1.

Substitute this in the equation forE to get(8x+1)2 ≡ x3−5x+1 (mod 17), that
is, x3+4x2+13x≡ 0 (mod 17), that is,x(x−3)(x−10)≡ 0 (mod 17).

The third point of intersection is(0,1), soP+Q=−(0,1) = (0,16).

Point doubling

The tangentT to E atP has slope3×32−5
2×8 ≡ 12(mod 17).

The equation forT is y= 12x+6.

SubstituteT in E to getx3+9x2+4x+16≡ 0 (mod 17), that is,
(x−3)2(x−2)≡ 0 (mod 17).

The third point of intersection is(2,13), so 2P=−(2,13) = (2,4).

PART 2

CLASSICALELLIPTIC-CURVE CRYPTOGRAPHY

The Classical Intractable Problems
Let G be a finite cyclic additive group with a generatorP. Let r = |G|.

Discrete Logarithm Problem (DLP): GivenQ∈ G, find x such that
Q= xP.

Diffie–Hellman Problem (DHP): GivenaP,bP∈ G (but nota andb),
computeabP.

Decisional Diffie–Hellman Problem (DDHP):GivenaP,bP,zP∈ G (but
nota, b andz), decide whetherzP= abP, that is, whetherz≡ ab(modr).

For elliptic-curve groups of suitable sizes, these problems are assumed to
be intractable.

We use the terms ECDLP and ECDHP to highlight the case of
elliptic-curve groups.

Elliptic-curve groups are not necessarily cyclic, so we usually work in
sufficiently large cyclic subgroups with known generators.

How Easy Is It to Solve ECDLP/ECDHP?

ECDLP and ECDHP are believed to be equivalent.

The DLP for finite fields can be solved by subexponential algorithms (like
NFS and FFS).

For general elliptic curves, subexponential algorithms are neither known
nor likely to exist.

Only the square-root methods work (Baby-Step-Giant-Step, Pollard rho
and lambda, Pohlig–Hellman). For a group of sizen, these methods run in
O (̃

√
n) time.

The ECDLP on a curve overFq can be mapped to the finite-field DLP over
Fqk (MOV or FR reduction).

In general,k≈ n. For supersingular curves,k∈ {1,2,3,4,6}.

For anomalous curves, a linear-time algorithm is known for the ECDLP.

Supersingular and anomalous curves are not used in classical ECC.

ElGamal Encryption
Let G be an additive cyclic group of sizer and with a generatorP.

Permanent key pair (of Bob)

Private key: A random integerd∈ {2,3, . . . , r −1}.

Private key: The group elementY= dP.

Encryption

Alice wants to encrypt the messageM ∈ G.

Alice generates a random session private keyd′ ∈ {2,3, . . . , r −1}.

Alice computesS= d′P andT = M+d′Y (whereY is Bob’s public key).

Alice sends(S,T) to Bob.

Decryption

Bob recoversM = T−dSusing his private keyd.

Correctness:dS= d′Y= dd′P.

Security

An eavesdropper knowsdPandd′P.

Computing the maskdd′P is equivalent to solving an instance of the DHP inG.

Elliptic Curve Digital Signature Algorithm (ECDSA)
Let G be an additive cyclic group of sizer and with a generatorP.

Key pair: Private keyd∈ {2,3, . . . , r −1}, and public keyY= dP.

Signature generation

Bob maps the messageM to a representativem∈ {0,1,2, . . . , r −1}.

Bob generates a random session keyd′ ∈ {2,3, . . . , r −1}.

Bob computesS= d′P, s≡ x(S) (modr) andt ≡ (m+ds)d′−1 (modr).

Bob’s signature onM is the pair(s, t).

Signature verification

Computew≡ t−1 (modr), u≡ mw(modr), andv≡ sw(modr).

ComputeV = uP+vY∈ G (here,Y is Bob’s public key).

Accept the signature if and only ifx(V)≡ s(modr).

Correctness

d′ ≡ (m+ds)t−1 ≡ (mw+dsw)≡ u1+u2d (modr).

S= d′P= uP+vdP= uP+vY.

PART 3

EFFICIENT IMPLEMENTATION

What to Implement?

A good finite-field library is the basic necessity. We assume that such a
library is available.

Elliptic-curve point addition and doubling are governed by fixed formulas.

The most time-consuming operation in classical ECC iselliptic-curve
scalar multiplication : Given an integern and an elliptic-curve pointP,
computenP.

It is easy to find the opposite of a point, so we assumen> 0.

Scalar multiplication is the inverse of ECDLP (givenP andnP, computen).

Scalar multiplication behaves like a one-way function.

A lot of optimization techniques apply to scalar-multiplication
implementations.

Here, we deal with software implementations only.

Left-to-Right Scalar Multiplication
We are given a pointP on an elliptic curveE defined over someFq.
We assume that the arithmetic functions ofFq are already available.
Let r be the order ofP.
Our task is to computenP for some integern∈ {1,2, . . . , r −1}.

Let n= (1ns−1ns−2 . . .n1n0)2 be the binary representation ofn.

Initialize S= P.

For i = s−1,s−2, . . . ,1,0, repeat:

SetS= 2S. /* Doubling */

If (ni = 1), then setS= S+P. /* Conditional adding */

ReturnS.

sdoubling operations.
At mostsaddition operations.s/2 additions on an average.
s≈ log2n.

Left-to-Right Scalar Multiplication: Example
Consider the curveE : y2 = x3+4x+3 modulop= 607.
TakeP= (234,121), andn= 410= (110011010)2.

[Init] S= P= (234,121).

[i = 7] Dbl: S:= 2S= (65,216), Add: S:= S+P= (2,176).

[i = 6] Dbl: S:= 2S= (223,283), Add: skipped.

[i = 5] Dbl: S:= 2S= (485,464), Add: skipped.

[i = 4] Dbl: S:= 2S= (484,76), Add: S:= S+P= (573,25).

[i = 3] Dbl: S:= 2S= (31,196), Add: S:= S+P= (403,378).

[i = 2] Dbl: S:= 2S= (461,250), Add: skipped.

[i = 1] Dbl: S:= 2S= (389,228), Add: S:= S+P= (170,25).

[i = 0] Dbl: S:= 2S= (541,197), Add: skipped.

Therefore,nP= (541,197). Requires 8D+4A.

Windowed Scalar Multiplication

Choose a small window sizew.

PrecomputeaP for a= 0,1,2, . . . ,2w−1.

Let n= (NtNt−1Nt−2 . . .N1N0)2w be the 2w-ary representation ofn.

Initialize S= NtP (use the precomputed table).

For i = t−1, t−2, . . . ,1,0, repeat:

For j = 0,1,2, . . . ,w−1, setS= 2S.

SetS= S+NiP (use the precomputed table).

ReturnS.

sdoubling operations.
Abouts/w additions at the cost of 2w additions during precomputation.
Practical choice of window size:w= 4.

Windowed Scalar Multiplication: Example
Consider the curveE : y2 = x3+4x+3 modulop= 607.
TakeP= (234,121), w= 3, andn= 410= (110 011 010)2 = (632)8.

[Precomputation] 2P= (65,216), 3P= (2,176), 4P= (368,523),
5P= (14,539), 6P= (223,283), and 7P= (96,385).

[Init] S:= 6P= (223,283).

[i = 1] Dbl: S:= 2S= (485,464)
Dbl: S:= 2S= (484,76)
Dbl: S:= 2S= (431,45)
Add: S:= S+3P= (403,378)

[i = 0] Dbl: S:= 2S= (461,250)
Dbl: S:= 2S= (389,228)
Dbl: S:= 2S= (402,361)
Add: S:= S+2P= (541,197)

Requires 6D+2A in the loop. Precomputation requires 1D+5A.
For large exponents, the precomputation overhead is insignificant.

Windowed Method with Reduced Precomputation

We representn= (NtNt−1Nt−2 . . .N1N0)2w for aw-bit window.

Precompute only the odd multiplesP,3P,5P, . . . ,(2w−1)P.

Express eachNi = 2r i νi with νi odd.

Earlier, we hadw doubling operations followed by one addition.

Now, we have:

w− r i doubling operations (S:= 2S)

One addition (S= S+νiP)

r i doubling operations (S:= 2S)

The counts of doubling and addition operations do not change in the loop.
Precomputation effort is almost halved.

Windowed Method: Example
Consider the curveE : y2 = x3+4x+3 modulop= 607.
TakeP= (234,121), w= 3, andn= 410= (110 011 010)2 = (632)8.

[Precomputation] 2P= (65,216), 3P= (2,176), 5P= (14,539), and
7P= (96,385).

[Init] S= O.

[i = 2] Dbl: S:= 2S= O

Dbl: S:= 2S= O

Add: S:= S+3P= (2,176)
Dbl: S:= 2S= (223,283)

[i = 1] Dbl: S:= 2S= (485,464)
Dbl: S:= 2S= (484,76)
Dbl: S:= 2S= (431,45)
Add: S:= S+3P= (403,378)

[i = 0] Dbl: S:= 2S= (461,250)
Dbl: S:= 2S= (389,228)
Add: S:= S+P= (170,25)
Dbl: S:= 2S= (541,197)

Sliding (Non-Adjacent) Window Method

Precompute only the odd multiples ofP.

Skip 0’s after a window (do doubling operations only).

The next window starts at the first 1 located after the last window.

The next window is handled as in the windowed method with reduced
precomputation.

Example: Taken= 410= (110011010)2.

The windows are: 1100 110 10.

Now, the sequence of operations is:

Init S to O.

First window: Dbl, Dbl, Add (3P), Dbl.

Skip: Dbl.

Second window: Dbl, Dbl, Add (3P), Dbl.

Third window: Dbl, Add (P), Dbl.

Signed Binary Representation

Allow negative digits.

Representn as(ntnt−1nt−2 . . .n1n0)2 = ∑t
i=0ni2i with eachni ∈ {−1,0,1}.

If no two consecutive digits are non-zero, this representation is called a
non-adjacent form (NAF).

It is easy to precompute−P.

Replace runs of consecutive 1’s.

. . .0111110. . . can be replaced by. . .10000̄10. . . , where1̄=−1.

Signed-binary representation ofn is not unique. For example,
23= 16+4+2+1= (10111)2 = 16+8−1= (1100̄1)2 = 32−8−1=
(101̄00̄1)2.

The NAF representation is unique and has the least possible number of
signed digits.

Computation of NAF

Let n= (nsns−1ns−2 . . .n1n0)2.

We addn with 2n. The sum may have a bit-size two more than that ofn.

n 0 0 ns ns−1 . . . n2 n1 n0

2n 0 ns ns−1 ns−2 . . . n1 n0 0
3n ds+1 ds ds−1 ds−2 . . . d1 d0 n0

Output carry cs+2 cs+1 cs cs−1 . . . c2 c1 c0

We haveci+1 = ⌊(ni +ni+1+ci)/2⌋, anddi = ni +ni+1+ci −2ci+1.

Now, we subtractn from 3n and discard the rightmost zero bit. We do not
do any borrow adjustment here, that is, 0−1 is retained as̄1=−1.

3n ds+1 ds ds−1 ds−2 . . . d1 d0 n0

n 0 0 ns ns−1 . . . n2 n1 n0

2n ms+1 ms ms−1 ms−2 . . . m1 m0 0

Therefore,mi = di −ni+1 = ni +ci −2ci+1.

di need not be computed.ci+1 andmi can be computed fromni ,ni+1,ci

alone. Table lookup can be used (only eight cases).

Computation of NAF: The Algorithm

Let n= (nsns−1ns−2 . . .n1n0)2. We takens+1 = ns+2 = 0.

To compute the NAF(ms+1msms−1 . . .m1m0) of n.

Initialize c= 0.

For i = 0,1,2, . . . ,s+1, repeat: /* You may use table lookup */

Setcnext= ⌊(ni +ni+1+c)/2⌋.
Setmi = ni +c−2cnext.

Setc= cnext.

Return(ms+1 . . .m1m0).

The digits are generated in the right-to-left order.

The expansion must bestoredfor use in left-to-right scalar-multiplication
algorithms.

Algorithms for left-to-right generation ofoptimalsigned binary
representation are also known.

Computation of NAF: Examples
Taken= 23= (10111)2.

Computation ofn+2n:

n= 23 0 0 1 0 1 1 1
2n= 46 0 1 0 1 1 1 0
3n= 69 1 0 0 0 1 0 1

Output carry 0 1 1 1 1 1 0

Computation of 3n−n:
3n= 69 1 0 0 0 1 0 1
n= 23 0 0 1 0 1 1 1

2n= 46 1 0 1̄ 0 0 1̄ 0

Therefore,n= 23= (101̄00̄1)2 = 25−23−20.

The NAF for 410 is 10̄1010̄1010.

For a 3-bit sliding window, we need to precompute±P,±3P,±5P,±7P.

Now, the odd-valued windows are 101̄ 0 10̄1 0 1 0

The NAF property guarantees that at least one zero exists between two
consecutive windows.

Width- w Non-Adjacent Form (wNAF or NAF w)

Take an integer widthw> 2.

Representn in the base 2.

The signed digits are zero or odd integers with absolute values< 2w−1.

Among anyw consecutive digits, at most one is non-zero.

ThewNAF representation is unique and optimal.

The average density of non-zero digits in thewNAF representation is
1/(w+1).

The basic NAF corresponds tow= 2.

Some other variants based on addition chains

Signed fractional window method

Mixed radix

τ-NAF (applicable to Koblitz curves)

Computation of the wNAF

Seti = 0.

While (n> 0), repeat:

If n is even, setmi = 0,

else setr = nrem 2w, if r > 2w−1, setr = r −2w, setmi = r andn= n− r.

Setn= n/2 and incrementi.

Return(mi−1mi−2 . . .m2m1m0).

This expansion is from right to left.

If n is even, then we get the next digit as 0.

If n is odd, we compute the next (odd) remainderr of n modulo 2w. It is
ensured thatr lies in the range[−(2w−1−1),+(2w−1−1)].

When thisr is subtracted fromn, it is guaranteed that the nextw−1 digits
are all 0.

Computation of the wNAF: Example
Let us compute the width-4 NAF ofn= 1234567.

i n mi n−mi (n−mi)/2
0 1234567 7 1234560 617280
1 617280 0 308640
2 308640 0 154320
3 154320 0 77160
4 77160 0 38580
5 38580 0 19290
6 19290 0 9645
7 9645 −3 9648 4824
8 4824 0 2412
9 2412 0 1206
10 1206 0 603
11 603 −5 608 304
12 304 0 152
13 152 0 76
14 76 0 38
15 38 0 19
16 19 3 16 8
17 8 0 4
18 4 0 2
19 2 0 1
20 1 1 0 0

1234567= (100030000̄5000̄30000007)
= 220+3×216+(−5)×211+

(−3)×27+7.

Multiple Scalar Multiplication

Let P,Q be elliptic-curve points, andm,n positive integers of the same
bit-size. We can computemP+nQ in a single loop.

Precompute the pointP+Q.

Let m= (msms−1ms−2 . . .m1m0)2 be the binary representation ofm.

Let n= (nsns−1ns−2 . . .n1n0)2 be the binary representation ofn.

Initialize S= O.

For i = s,s−1,s−2, . . . ,1,0, repeat:

SetS= 2S.

If (mi ,ni) = (1,0), setS= S+P,
else if(mi ,ni) = (0,1), setS= S+Q,
else if(mi ,ni) = (1,1), setS= S+(P+Q) (use precomputed value).

ReturnS.

Multiple Scalar Multiplication (Contd)
Comparison with two scalar multiplications

The number of doubling operations is halved.

On an average, the number of addition reduces froms to 3
4s.

Windowed adaptation

PrecomputeaP+bQ for all a,b∈ {0,1,2, . . . ,2w−1}.

w= 2 is a practical choice.

w> 3 calls for too much precomputation.

Generalization to the sum of three (or more) scalar products

To computelP+mQ+nR.

PrecomputeP+Q, P+R, Q+R, andP+Q+R.

Depending upon the bitsl i ,mi ,ni , addP,Q,Ror one of the precomputed
points toS.

Fixed-Base Scalar Multiplication

We want to computenP for somen∈ {0,1,2, . . . , r −1}.

Let the bit size ofr bes.

Precompute and storeP,2P,4P,8P, . . . ,2s−1P.

Expressn= 2i1 +2i2 + · · ·+2ik.

Add the precomputed points 2i j P.

No doubling required.

Huge permanent storage overhead.

Efficient only whenP does not change frequently.

Fixed-Base Multiple Scalar Multiplication

To computemP+nQwith s-bit scalarsmandn.

P andQ are assumed to be fixed.

Precompute and store the points 2iP, 2iQ and 2i(P+Q) for all
i = 0,1,2, . . . ,s−1.

Let thei-th bits ofmandn bemi andni .

If (mi ,ni) = (0,0), do nothing.

If (mi ,ni) = (1,0), add 2iP.

If (mi ,ni) = (0,1), add 2iQ.

If (mi ,ni) = (0,1), add 2i(P+Q).

No doubling needed.

Huge permanent storage.

If P is fixed, butQ changes frequently, the amortized cost of the
precomputations of 2iQ and 2i(P+Q) may be high.

Affine Curves

K is a field.

K is the algebraic closure ofK.

It is often necessary to assume thatK is algebraically closed.

Affine plane: K2 = {(h,k) | h,k∈ K}.

For (h,k) ∈ K2, the field elementsh,k are calledaffine coordinates.

Affine curve: Defined by a polynomial equation:

C : f (X,Y) = 0.

It is customary to consider only irreducible polynomialsf (X,Y). If f (X,Y)
admits non-trivial factors, the curveC is the set-theoretic union of two (or
more) curves of smaller degrees.

Rational points onC: All points (h,k) ∈ K2 such thatf (h,k) = 0.

Rational points onC are calledfinite points.

Affine Curves: Examples

Straight lines: aX+bY+c= 0.

Circles: (X−a)2+(Y−b)2− r2 = 0.

Conic sections:aX2+bXY+cY2+dX+eY+ f = 0.

Elliptic curves: Defined by theWeierstrass equation:
Y2+(a1X+a3)Y= X3+a2X2+a4X+a6.

If charK 6= 2,3, this can be simplified asY2 = X3+aX+b.

Hyperelliptic curves of genusg: Y2+u(X)Y= v(X) with degu6 g,
degv= 2g+1, andv monic.

If charK 6= 2, this can be simplified asY2 = w(X) with degw= 2g+1 and
w monic.

Parabolas are hyperelliptic curves of genus 0.

Elliptic curves are hyperelliptic curves of genus 1.

Projective Plane

Define a relation∼ onK3\{(0,0,0)} as(h,k, l)∼ (h′,k′, l ′) if h′ = λh,
k′ = λk andl ′ = λ l for some non-zeroλ ∈ K.

∼ is an equivalence relation onK3\{(0,0,0)}.

The equivalence class of(h,k, l) is denoted by[h,k, l].

[h,k, l] can be identified with the line inK3 passing through the origin and
the point(h,k, l).

The set of all these equivalence classes is theprojective planeoverK.

The projective plane is denoted asP2(K).

h,k, l in [h,k, l] are calledprojective coordinates.

Projective coordinates are unique up to multiplication by non-zero elements
of K.

The three projective coordinates cannot be simultaneously 0.

Relation Between the Affine and the Projective Planes

P2(K) is the affine planeK2 plus the points at infinity.

TakeP= [h,k, l] ∈ P2(K).

Case 1:l 6= 0.

P= [h/l,k/l,1] is identified with the point(h/l,k/l) ∈ K2.

The line inK3 corresponding toP meetsZ = 1 at(h/l,k/l,1).

P is called afinite point .

Case 2:l = 0.

The line inK3 corresponding toP does not meetZ = 1.

P does not correspond to a point inK2.

P is apoint at infinity .

For every slope of lines in theX,Y-plane, there exists exactly one point at
infinity.

A line passes through all the points at infinity. It is theline at infinity .

Two distinct lines (parallel or not) inP2(K) always meet at a unique point.

Through any two distinct points inP2(K) passes a unique line.

Passage from Affine to Projective Curves

A (multivariate) polynomial is calledhomogeneousif every non-zero term
in the polynomial has the same degree.

Example:X3+2XYZ−3Z3 is homogeneous of degree 3.X3+2XY−3Z is
not homogeneous. The zero polynomial is homogeneous of any degree.

Let C : f (X,Y) = 0 be an affine curve of degreed.

f (h)(X,Y,Z) = Zdf (X/Z,Y/Z) is thehomogenizationof f .

C(h) : f (h)(X,Y,Z) = 0 is theprojective curve corresponding toC.

For any non-zeroλ ∈ K, we havef (h)(λh,λk,λ l) = λ df (h)(h,k, l). So
f (h)(λh,λk,λ l) = 0 if and only if f (h)(h,k, l) = 0.

The rational points ofC(h) are all[h,k, l] with f (h)(h,k, l) = 0.

Finite points on C(h): PutZ = 1 to getf (h)(X,Y,1) = f (X,Y). These are
the points onC.

Points at infinity on C(h): PutZ = 0 and solve forf (h)(X,Y,0) = 0. These
points do not belong toC.

Examples of Projective Curves

Straight Line Circle

aX+bY+c=0

aX+bY=0

Straight line: aX+bY+cZ= 0.
Finite points: Solutions ofaX+bY+c= 0.

Points at infinity: Solve foraX+bY= 0.
If b 6= 0, we haveY=−(a/b)X. So[1,−(a/b),0] is the only point at infinity.
If b= 0, we haveaX= 0, that is,X = 0. So[0,1,0] is the only point at infinity.

Circle: (X−aZ)2+(Y−bZ)2 = r2Z2.
Finite points: Solutions of(X−a)2+(Y−b)2 = r2.

Points at infinity: Solve forX2+Y2 = 0.
For K = R, the only solution isX = Y= 0, so there is no point at infinity.
For K = C, the solutions areY=± iX, so there are two points at infinity:[1, i ,0]
and[1,− i ,0].

Examples of Projective Curves (contd.)

Y=0

Parabola Hyperbola

Y = X2
12 2

Y=XY=−X

X −Y =

Parabola: Y2 = XZ.

Finite points: Solutions ofY2 = X.

Points at infinity: Solve forY2 = 0.
Y= 0, so[1,0,0] is the only point at infinity.

Hyperbola: X2−Y2 = Z2.

Finite points: Solutions ofX2−Y2 = 1.

Points at infinity: Solve forX2−Y2 = 0.
Y=±X, so there are two points at infinity:[1,1,0] and[1,−1,0].

Examples of Projective Curves (contd.)

y y

x x

Elliptic curve: Y2Z+a1XYZ+a3YZ2 = X3+a2X2Z+a4XZ2+a6Z3.

Finite points: Solutions ofY2+a1XY+a3Y= X3+a2X2+a4X+a6.

Points at infinity: Solve forX3 = 0.
X = 0, that is,[0,1,0] is the only point at infinity.

Elliptic-Curve Arithmetic in Projective Coordinates
Consider the simple Weierstrass equationE : y2 = x3+ax+b.
Let P= [h1,k1, l1] andQ= [h2,k2, l2] in projective coordinates.
We want to computeP+Q= [h,k, l] and 2P= [h′,k′, l′].

The slope of the line passing throughP andQ is

λ =

k2
l2
− k1

l1
h2
l2
− h1

l1

=
k2l1−k1l2
h2l1−h1l2

.

Therefore,

h
l
= λ 2− h1

l1
− h2

l2
=

l1l2(k2l1−k1l2)2− (h2l1−h1l2)2(h1l2+h2l1)
l1l2(h2l1−h1l2)2 ,

and
k
l
= λ

(

h1

l1
− h

l

)

− k1

l1
.

Substituting the values ofλ andh/l gives an explicit expression fork/l.

These expressions are too clumsy.

Elliptic-Curve Addition in Projective Coordinates

Practical solution: Collect common subexpressions.

T1 = k2l1−k1l2,

T2 = h2l1−h1l2,

T3 = T2
2,

T4 = T2T3,

T5 = l1l2T2
1 −T4−2h1l2T3,

h = T2T5,

k = T1(h1l2T3−T5)−k1l2T4,

l = l1l2T4.

Further optimization possible by storingh1l2, k1l2 andl1l2 in temporary
variables.

Elliptic-Curve Doubling in Projective Coordinates

The projective coordinatesh′,k′, l′ of 2P can be computed by the following
formulas.

T1 = 3h2
1+al21,

T2 = k1l1,

T3 = h1k1T2,

T4 = T2
1 −8T3,

T5 = T2
2,

h′ = 2T2T4,

k′ = T1(4T3−T4)−8k2
1T5,

l′ = 8T2T5.

Projective Coordinates and Scalar Multiplication

Computing the affine coordinates requires a division in the field. (Recall
the computation of the slopeλ .)

Division could be much costlier than multiplication and squaring in the
field.

Projective addition and doubling formulas do not use any division.

At the end of the loop, the sum is converted from[h,k, l] to (h/l,k/l) by a
single division.

Projective coordinates increase the number of multiplication and squaring
operations substantially.

In some situations, speedup is reported with projective coordinates.

Mixed Coordinates

The left-to-right multiplication conditionally addsP to S.

The windowed variant addsaP to S for a smalla.

P is available in affine coordinates.

The small multiples ofP can be computed in affine coordinates.

AddingS= [h1,k1, l1] andaP= (h2,k2) is same as adding[h1,k1, l1] and
[h2,k2,1].

Sincel2 = 1, the addition algorithm can be simplified, and many operations
can be saved.

For example,
T1 = k2l1−k1l2

now becomes
T1 = k2l1−k1.

Generalized Projective Coordinates

Let c,d be positive integers. Assume that gcd(c,d) = 1.

Define an equivalence relation onK3\{(0,0,0)} as(h,k, l)∼ (h′,k′, l′) if
and only ifh′ = λ ch, k′ = λ dk, andl′ = λ l for some non-zeroλ ∈ K.

Call the equivalence class of(h,k, l) as[h,k, l]c,d.

Identify the finite point(h,k) with [h,k,1]c,d.

Identify the finite point[h,k, l]c,d with (h/lc,k/ld).

Homogenization requires replacingx by X/Zc andy by Y/Zd.

Give the weightc to X, the weightd to Y, and the weight 1 toZ.

Each non-zero term in the homogenization is of the same total weight.

Generalized Projective Coordinates: Examples

The standard projective coordinates correspond toc= d= 1.

Jacobian Coordinates:The weights arec= 2 andd= 3.

López–Dahab Coordinates:The weights arec= 1 andd= 2.

For certain curves, generalized coordinates reduce the operation counts for
point addition and doubling.

The use of mixed coordinates can produce further speedup.

Montgomery Ladders

A modification of the left-to-right scalar multiplication.

Two pointsSandT are computed in the loop.

Invariance:T = S+P.

Initialize S= O andT = P.

For i = s,s−1,s−2, . . . ,1,0, repeat:

If (ni = 0) /* Update(S,T) to (2S,2S+P) = (2S,S+T) */

AssignT = S+T andS= 2S.

else /* Update(S,T) to (2S+P,2S+2P) = (S+T,2T) */

AssignS= S+T andT = 2T.

ReturnS.

The Montgomery ladder is resistant to side-channel attacks.

The Montgomery ladder is unlikely to be adaptable to windowed variants.

Montgomery Ladders (Contd)

Consider the curveE : y2 = x3+ax+b.

Let P= (h1,k1), Q= (h2,k2), P+Q= (h3,k3), andP−Q= (h4,k4).
SupposeP 6= Q. The addition formula gives

(h1−h2)
2h3 = (h1+h2)(h1h2+a)+2b−2k1k2,

(h1−h2)
2h4 = (h1+h2)(h1h2+a)+2b+2k1k2.

Multiply these two formulas and substitutek2
1 = h3

1+ah1+b and
k2

2 = h3
2+ah2+b to get

h3h4(h1−h2)
2 = (h1h2−a)2−4b(h1+h2).

Givenh1,h2,h4 alone, one can computeh3.

Thex-coordinateh5 of 2P can be computed fromh1 alone:

4h5(h
3
1+ah1+b) = (h2

1−a)2−8bh1.

Montgomery Ladders (Contd)

We always haveS−T =−P. Moreover,x(−P) = x(P).

There is no need to compute anyy-coordinate in the Montgomery ladder.

DenotekP= (xk,yk). Therefore,P= (x1,y1) is known.

The Montgomery loop computesxn = x(S) andxn+1 = x(T). From these,
they-coordinate ofS= nT is computed as

yn =
(x1+xn)(x1xn+a)+2b− (x1−xn)

2xn+1

2y1
.

Each iteration needs one addition and one doubling.

Montgomery ladders are particularly attractive for curves of the form

By2 = x3+Ax2+x.

Projective coordinates help for these curves.

Every curve of the formy2 = x3+ax+b (like a curve of large prime order)
cannot be converted to the Montgomery form.

PART 4

PAIRING ON ELLIPTIC CURVES

Weil Pairing
Let E be an elliptic curve defined over a finite fieldK = Fq.
Take a positive integermcoprime top= charK.
Let µm denote the set ofm-th roots of unity inK̄.
We haveµm ⊆ Fqk, wherek= ordm(q) is called theembedding degree.
Let E[m] be those points inE= E(K̄), whose orders dividem.

Weil pairing is a functionem : E[m]×E[m]→ µm.

Bilinearity:
em(P+Q,R) = em(P,R)em(Q,R),

em(P,Q+R) = em(P,Q)em(P,R).

Alternation: em(P,P) = 1.

Skew symmetry: em(Q,P) = em(P,Q)−1.

Non-degeneracy:If P 6= O, thenem(P,Q) 6= 1 for someQ∈ E[m].

If m is a prime andP 6= O, thenem(P,Q) = 1 if and only ifQ lies in the
subgroup generated byP (that is,Q= aP for some integera).

Line Functions

To compute the equation of the lineLP,Q or the vertical lineLR,−R.

RQ

P

−R

If P= Q= O, return 1.

If P= O, returnx−x(Q).

If Q= O, returnx−x(P).

If P=−Q, returnx−x(P).

Now, letP= (h1,k1) andQ= (h2,k2).

If P= Q, takeλ =
3h2

1+a
2k1

, else takeλ =
k2−k1

h2−h1
.

Setµ = λh1−k1.

Returny−λx+µ.

The Functionsfn,P (n∈ Z, P∈ E(K̄))
These are rational functions unique up to multiplication by elements ofK̄∗.

fn,P satisfy the recurrence relation:
f0,P = f1,P = 1,

fn+1,P =

(

LP,nP

L(n+1)P,−(n+1)P

)

fn,P for n> 1,

f−n,P =
1

fn,P
for n> 1.

The rational functionsfn,P also satisfy

fn+n′,P = fn,P fn′,P×
(

LnP,n′P

L(n+n′)P,−(n+n′)P

)

.

In particular, forn= n′, we have

f2n,P = f 2
n,P×

(

LnP,nP

L2nP,−2nP

)

.

The functionfn,P is usually kept in the factored form.

The value offn,P at some pointQ is usually needed.

Miller’s Algorithm for Computing fn,P

Input: A point P∈ E and a positive integern.

Output: The rational functionfn,P.

Steps

Let n= (nsns−1 . . .n1n0)2 be the binary representation ofn with ns = 1.

Initialize f = 1 andU = P.
For i = s−1,s−2, . . . ,1,0, do the following:

/* Doubling */

Updatef = f 2×
(

LU,U

L2U,−2U

)

andU = 2U.

/* Conditional adding */

If (ni = 1), updatef = f ×
(

LU,P

LU+P,−(U+P)

)

andU = U+P.

Returnf .

Note: One may supply a pointQ∈ E and wish to compute the valuefn,P(Q)
(instead of the functionfn,P). In that case, the functionsLU,U/L2U,−2U and
LU,P/LU+P,−(U+P) should be evaluated atQ before multiplication withf .

Weil Pairing and the Functions fn,P

Let P,Q∈ E[m], and we want to computeem(P,Q).

Choose a pointT not equal to±P,−Q,Q−P,O.

We haveem(P,Q) =
fm,Q(T) fm,P(Q−T)

fm,P(−T) fm,Q(P+T)
.

If P 6= Q, then we also haveem(P,Q) = (−1)m fm,P(Q)

fm,Q(P)
.

Miller’s algorithm for computingfn,P(Q) can be used.

All these invocations of Miller’s algorithm haven= m.

So a single double-and-add loop suffices.

For efficiency, one may avoid the division operations in Miller’s loop by
separately maintaining polynomial expressions for the numerator and the
denominator off . After the loop terminates, a single division is made.

Miller’s Algorithm for Computing em(P,Q)

If (P= Q), return 1.

Let m= (1ms−1 . . .m1m0)2 be the binary representation ofm.

Initialize fnum= fden= 1, U = P, andV = Q.

For i = s−1,s−2, . . . ,1,0, repeat:
/* Doubling */
Update numeratorfnum= f 2

num×LU,U(Q)×L2V,−2V(P).

Update denominatorfden= f 2
den×L2U,−2U(Q)×LV,V(P).

UpdateU = 2U andV = 2V.

/* Conditional adding */
If (mi = 1), then execute the following three lines:

Update numeratorfnum= fnum×LU,P(Q)×LV+Q,−(V+Q)(P).

Update denominatorfden= fden×LU+P,−(U+P)(Q)×LV,Q(P).

UpdateU = U+P andV = V+Q.

/* End of for loop */

Return(−1)mfnum/fden.

Weil Pairing: Example

TakeE : Y2 = X3+3X defined overF43.

This is supersingular with|E(F43)|= 44, andE(F43)∼= Z22⊕Z2.

Takem= 11. The embedding degree for this choice isk= 2.

We work in the fieldF432 = F1849= F43(θ), whereθ 2+1= 0.

F∗432 contains all the 11-th roots of unity: 1, 2+13θ , 2+30θ , 7+9θ ,
7+34θ , 11+3θ , 11+40θ , 18+8θ , 18+35θ , 26+20θ , and 26+23θ .

E(F432)∼= Z44⊕Z44 containsE[11]∼= Z11⊕Z11.

P= (1,2) andQ= (−1,2θ) generateE[11].

Let us computeem(P,Q) for P := P= (1,2) andQ := 4P+5Q=
(15+22θ ,5+14θ).

11= (1011)2.

Initialization: f = fnum/fden= 1/1, U = P, andV = Q.

Miller Iteration for i = 2

Doubling

Λ1 = LU,U/L2U,−2U =
y+20x+21

x+32

Λ2 = L2V,−2V/LV,V =
x+(36+21θ)

y+(12+35θ)x+(26+14θ)

f = f 2× Λ1(Q)

Λ2(P)
=

34+37θ
28+θ

U = 2P= (11,26) andV = 2Q= (7+22θ ,28+7θ)

Addition

m2 = 0, so addition is skipped.

Miller Iteration for i = 1
Doubling

Λ1 = LU,U/L2U,−2U =
y+31x+20

x+7

Λ2 = L2V,−2V/LV,V =
x+(2+26θ)

y+(18+22θ)x+(29+2θ)

f = f 2× Λ1(Q)

Λ2(P)
=

12+15θ
25+18θ

U = 4P= (36,18) andV = 4Q= (41+17θ ,6+6θ)
Addition

Λ1 = LU,P/LU+P,−(U+P) =
y+2x+39

x+33

Λ2 = LV+Q,−(V+Q)/LV,Q =
x+(41+8θ)

y+(28+9θ)x+(31+9θ)

f = f 2× Λ1(Q)

Λ2(P)
=

25+15θ
28+20θ

U = 5P= (10,16) andV = 5Q= (2+35θ ,30+18θ)

Miller Iteration for i = 0
Doubling

Λ1 = LU,U/L2U,−2U =
y+8x+33

x+42

Λ2 = L2V,−2V/LV,V =
x+(28+21θ)

y+(19+16θ)x+(19+16θ)

f = f 2× Λ1(Q)

Λ2(P)
=

10+22θ
12+28θ

U = 10P= (1,41) andV = 10Q= (15+22θ ,38+29θ)
Addition

Λ1 = LU,P/LU+P,−(U+P) =
x+42

1

Λ2 = LV+Q,−(V+Q)/LV,Q =
1

x+(28+21θ)

f = f 2× Λ1(Q)

Λ2(P)
=

12θ
18+32θ

U = 11P= O andV = 11Q= O

Weil Pairing: Example

We haveem(P,Q) = (−1)11
(

12θ
18+32θ

)

= 26+20θ . This is indeed an

11-th root of unity.

If P,Q are linearly dependent, we haveem(P,Q) = 1.

The Miller loop may encounter adivision by zeroerror in this case.

Use the alternative formula

em(P,Q) =
fm,Q(T) fm,P(Q−T)

fm,P(−T) fm,Q(P+T)

for a randomly chosen pointT.

Tate Pairing

Let E be an elliptic curve defined overK = Fq with p= charK.
Let mbe a positive integer coprime top.
Let k= ordm(q) (theembedding degree), andL = Fqk.
Let E[m] = {P∈ E(K̄) | mP= O}, andmE(L) = {mP| P∈ E(L)}.
Let (L∗)m = {am | a∈ L∗} be the set ofm-th powers inL∗.

Let P be a point inE[m], andQ a point inE(L).

TheTate pairing is a function

〈 , 〉m : E[m]×E(L)/mE(L)→ L∗/(L∗)m

that maps a pair of pointsP,Q to 〈P,Q〉m.

Q should be regarded as a point inE(L)/mE(L).

The value of〈P,Q〉m is unique up to multiplication by anm-th power of a
non-zero element ofL, that is,〈P,Q〉m is unique inL∗/(L∗)m.

Properties of Tate Pairing

Bilinearity:

〈P+Q,R〉m = 〈P,R〉m〈Q,R〉m,

〈P,Q+R〉m = 〈P,Q〉m〈P,R〉m.

Non-degeneracy:For everyP∈ E[m], P 6= O, there existsQ with
〈P,Q〉m 6= 1. For everyQ /∈ mE(L), there existsP∈ E[m] with 〈P,Q〉m 6= 1.

The Weil pairing is related to the Tate pairing as

em(P,Q) =
〈P,Q〉m

〈Q,P〉m

up tom-th powers.

Let k= ordm(q) be the embedding degree. The Tate pairing can be made
unique by exponentiation to the power(qk−1)/m:

êm(P,Q) = (〈P,Q〉m)
qk−1

m

êm(P,Q) is called thereduced Tate pairing. The reduced pairing
continues to exhibit bilinearity and non-degeneracy.

Computing the Tate Pairing

Take a pointT 6= P,−Q,P−Q,O.

We have〈P,Q〉m =
fm,P(Q+T)

fm,P(T)
.

If P andQ are linearly independent, then〈P,Q〉m = fm,P(Q).

Miller’s algorithm is used to compute〈P,Q〉m.

A single double-and-add loop suffices.

For efficiency, the numerator and the denominator inf may be updated
separately. After the loop, a single division is made.

If the reduced pairing is desired, then afinal exponentiation to the power
(qk−1)/m is made on the value returned by Miller’s algorithm.

Weil vs. Tate Pairing

The Miller loop for Tate pairing is more efficient than that for Weil pairing.

The reduced Tate pairing demands an extra exponentiation.

Let k= ordm(q) be the embedding degree, andL = Fqk.

Tate pairing requires working in the fieldL.

Let L′ be the field obtained by adjoining toL the coordinates of all the
points ofE[m].

Weil pairing requires working in the fieldL′.

L′ is potentially much larger thanL.

Special case:m is a prime divisor of|E(K)| with m6 |q andm6 |(q−1).
Then,L′ = L. So it suffices to work in the fieldL only.

For cryptographic applications, Tate pairing is used more often that Weil
pairing.

One takesFq with |q| about 500–2000 bits andk6 12. Larger embedding
degrees are impractical for implementation.

Distortion Maps
Let mbe a prime divisor of|E(K)|.
Let P be a generator of a subgroupG of E(K) of orderm.
Goal: To define a pairing of the points inG.

If k= 1 (that is,L = K), then〈P,P〉m 6= 1.

Bad news: If k> 1, then〈P,P〉m = 1.
But then, by bilinearity,〈Q,Q′〉m = 1 for all Q,Q′ ∈ G.

A way out: If k> 1 andQ∈ L is linearly independent ofP (that is,Q /∈ G),
then〈P,Q〉m 6= 1.

Let φ : E(L)→ E(L) be an endomorphism ofE(L) with φ(P) /∈ G.
φ is called adistortion map.

Define thedistorted Tate pairing of P,Q∈ G as〈P,φ(Q)〉m.

Sinceφ(P) is linearly independent ofP, we have〈P,φ(P)〉m 6= 1.

Sinceφ is an endomorphism, bilinearity is preserved.

Symmetry: We have〈Q,φ(Q′)〉m = 〈Q′,φ(Q)〉m for all Q,Q′ ∈ G.

Distortion maps exist only for supersingular curves.

Twists
Let E be defined by the short Weierstrass equationY2 = X3+aX+b.
Let d > 2, andv∈ F∗q ad-th power non-residue.

Consider the curveE′ : Y2 = X3+v4/daX+v6/db (defined overFqd).

If d= 2, thenE′ is defined overFq itself.

E′ is called atwist of E of degreed.

E andE′ are isomorphic overFqd. An explicit isomorphism is given by the
mapφd : E′ → E taking(h,k) 7→ (v−2/dh,v−3/dk).

Let mbe a prime divisor of|E(Fq)|, G a subgroup of orderm in E(Fqk), and
G′ a subgroup of orderm in E′(Fqk). Let P,P′ be generators ofG andG′.
Suppose thatφd(P′) is linearly independent ofP.

Ford= 2 (quadratic twist), a natural choice isG⊆ E(Fq) and
G′ ⊆ E′(Fq).

Define a pairing of pointsQ∈ G andQ′ ∈ G′ as〈Q,φd(Q′)〉m.

This is called thetwisted Tate pairing.

Pairing-Friendly Curves

Requirement for efficient computation: Small embedding degreek.

For general curves,k is quite high (|k| ≈ |m|).
Only some specific types of curves qualify as pairing-friendly.

Supersingular curves

By Hasse’s Theorem,|E(Fq)|= q+1− t with |t|6 2
√

q.

If p|t, we callE asupersingular curve.

Curves of the formY2+aY= X3+bX+c are supersingular over fields of
characteristic 2.

Supersingular curves have small embedding degrees. The only possibilities are
1,2,3,4,6.

If Fq is a prime field withq> 5, the only possibility isk= 2.

Non-supersingular curves are calledordinary curves.

It is difficult to locate ordinary curves with small embedding degrees.

Supersingular Curves: Examples

E : Y2 = X3+a defined overFp with an odd primep≡ 2 (mod 3).
Embedding degree:k= 2.

E : Y2 = X3+aX defined overFp with an odd primep≡ 3 (mod 4).
Embedding degree:k= 2.

E : Y2+Y= X3+X+a with a= 0 or 1 defined overF2d with oddd.
Embedding degree:k= 4.

E : Y2 = X3−X±1 defined overF3d with 2,3 6 | d.
Embedding degree:k= 6.

E : Y2 = X3+a defined overFp2 with a primep≡ 5 (mod 6) and with
a∈ Fp2 a square but not a cube.
Embedding degree:k= 3.

Let E be a supersingular curve defined overFp with p> 5. Then,E as a
curve overFpn with evenn is again supersingular.
Embedding degree:k= 1.

How to Find Ordinary Pairing-Friendly Curves

Let k be a positive integer, and∆ a small positive square-free integer.

Search for integer-valued polynomialst(x),m(x),q(x) ∈ Q[x] to represent a
family of elliptic curves of embedding degreek and discriminant∆. The
triple (t,m,q) should satisfy the following:

1 q(x) = p(x)n for somen∈ N andp(x) ∈Q[x] representing primes.

2 m(x) is irreducible with a positive leading coefficient.

3 m(x)|q(x)+1− t(x).

4 m(x)|Φk(t(x)−1), whereΦk is thek-th cyclotomic polynomial.

5 There are infinitely many integers(x,y) satisfying∆y2 = 4q(x)− t(x)2.

If y in Condition 5 can be parametrized by a polynomialy(x) ∈ Q[x], the
family is calledcomplete, otherwise it is calledsparse.

For obtaining ordinary curves, we require gcd(q(x),m(x)) = 1.

Thecomplex multiplication method is used to obtain specific examples of
elliptic curvesE overFq with E(Fq) having a subgroup of orderm.

Some Families of Ordinary Pairing-Friendly Curves

Some sparse families of ordinary pairing-friendly curves are:

MNT (Miyaji–Nakabayashi–Takano) curves: These are curves of prime
orders with embedding degrees 3, 4 or 6.

Freeman curves:These curves have embedding degree 10.

Some complete families of ordinary pairing-friendly curves are:

BN (Barreto–Naehrig) curves:These curves have embedding degree 12 and
discriminant 3.

SB (Scott–Barreto) curves

BLS (Barreto–Lynn–Scott) curves

BW (Brezing–Weng) curves

Efficient Implementations of Pairing
Denominator elimination: Applicable to Tate pairing.

Let the embedding degreek= 2d be even.

fn,P(Q) is computed by Miller’s algorithm, whereQ= (h,k) with h∈ Fqd.

The denominatorsL2U,−2U(Q) andLU+P,−(U+P)(Q) correspond to vertical
lines, evaluate to elements ofFqd, and can be discarded.

The final exponentiation guarantees correct computation of Tate pairing.

BMX (Blake-Murty-Xu) refinements use 2-bit windows in Miller’s loop.

Loop reduction: With clever modifications to Tate pairing, the number of
iterations in the Miller loop can be substantially reduced.

A typical reduction is by a factor of 2.
Examples

η and ηT pairings (for supersingular curves)

Ate pairing (for ordinary curves)

R-ate pairing

PART 5

PAIRING-BASED CRYPTOGRAPHY

Intractable Problems (Contd)

Let G be a finite cyclic additive group with a generatorP, andG′ a finite
cyclic multiplicative group. We assume that|G|= r is a prime. Suppose
thate : G×G→ G′ is an efficiently computable pairing.

Decisional Diffie–Hellman Problem (DDHP):GivenaP,bP,zP∈ G (but
nota, b andz), decide whetherzP= abP, that is, whetherz≡ ab(modr).

The existence of the pairing functionemakes the DDHP inG easy. In fact,
z≡ ab(modr) if and only if e(aP,bP) = e(P,zP). In this case,G is called
aGap Diffie–Hellman (GDH) group.

In a GDH group, givenaP,bP, it is easy to computee(P,P)ab = e(aP,bP).

The Problems That Are Intractable in Presence of
Pairing

Bilinear Diffie–Hellman Problem (BDHP): GivenP,aP,bP,cP∈ G,
P 6= 0, computee(P,P)abc.

Decisional Bilinear Diffie–Hellman Problem (DBDHP):Given
P,aP,bP,cP,zP∈ G, P 6= 0, decide whethere(P,P)abc= e(P,P)z, that is,
z≡ abc(modr).

Bilinear Diffie–Hellman Assumption: The pairing map does not make
these problems computationally easy.

However, we require the DLP/DHP to be difficult inG.

If one ofa,b,c is known,e(P,P)abc= e(bP,cP)a = e(aP,cP)b = e(aP,bP)c can
be computed.

If one ofbcP,acP,abP is known,e(P,P)abc= e(aP,bcP) = e(bP,acP) =
e(cP,abP) can be computed.

Example: Elliptic-curve groups with Weil pairing.

Extensions possible fore : G1×G2 → G3 (Co-BDHP, Co-DBDHP).

Identity-Based Encryption (IBE)

Original concept proposed by Shamir in 1984.

The first realization proposed in 2001 by Boneh and Franklin.

The Boneh–Franklin IBE uses pairing.

Conventional encryption and signature schemes (like RSA, DSA) use
public-key certificates.

Every use of a public key requires validating the public key using a
certificate from a trustedCertification Authority (CA) .

An identity-based scheme uses a public identity (like e-mail ID) of an
entity as the public key, which does not require validation.

A trusted authority is still needed as aKey Generation Center (KGC) or
Public Key Generator (PKG).

The KGC is needed only once during the registration of an entity.

Boneh–Franklin IBE: Setup Phase

Domain parameters

GroupsG,G′ of prime orderr

A generatorP of G

An efficiently computable bilinear mape : G×G→ G′

Keys of PKG

Master Secret Key (MSK): s∈R Z∗
r

Public Key: PPKG = sP.

Hash functions

H1 : {0,1}∗ → G

H2 : G′ →{0,1}n for some suitablen

r,G,G′,e,P,PPKG,n,H1,H2 are made public

s is kept secret

scannot be retrieved fromPPKG = sP(DLP assumption)

Boneh–Franklin IBE: Key-generation Phase

The KGC sets up keys for an entity Bob.

Bob’s public identity:bob@p.b.cr

Bob’s public key:PBob= H1(bob@p.b.cr).

Bob’s private key:DBob= sPBob.

The KGC transfersDBob to Bob securely.

Anybody can computePBob.

Bob cannot computes from DBob (DLP assumption).

Boneh–Franklin IBE: Encryption Phase

Alice plans to send ann-bit messageM to Bob.

Alice computes Bob’s hashed identityPBob= H1(bob@p.b.cr) ∈ G.

Alice computesg= e(PBob,PPKG) ∈ G′.

Alice chooses a random elementa∈ Z∗
r .

Alice computes the ciphertextC= (aP,M⊕H2(ga)) ∈ G×{0,1}n.

a is the session secret.

H2(ga) is used as a mask to hide the message.

Anybody can send messages to Bob.

No certificates are required.

Boneh–Franklin IBE: Decryption Phase
Bob plans decrypts a ciphertextC= (U,V) ∈ G×{0,1}n.

Bob computes the elementg′ = e(DBob,U) ∈ G′.

Bob computes the maskH2(g′).

Bob retrieves the messageM = V⊕H2(g′).

Correctness

g′ = e(DBob,U) = e(DBob,aP) = e(sPBob,aP) = e(PBob,P)sa=
e(PBob,sP)a = e(PBob,PPKG)

a = ga

Security

An eavesdropper knowsP, U = aP, PBob= bPandPPKG = sP.

The mask ise(P,P)abs.

Intractability of the BDHP guarantees security against eavesdroppers.

Alice knowsa and can compute the mask.

Bob knowsbsPand can compute the mask.

SOK Two-Party Key Agreement

Proposed by Sakai, Ohgishi and Kasahara (2000).

Setup phase:As in Boneh-Franklin IBE (r,G,G′,P,s,PPKG,e,n,H1)

Key-generation phase:

Alice: Public keyPAlice = H1(alice@p.b.cr), private keyDAlice = sPAlice.

Bob: Public keyPBob= H1(bob@p.b.cr), private keyDBob= sPBob.

Key-agreement phase:

Alice computesSAlice = e(DAlice,PBob).

Bob computesSBob= e(PAlice,DBob).

Correctness:SAlice = e(DAlice,PBob) = e(sPAlice,PBob) = e(PAlice,PBob)
s =

e(PAlice,sPBob) = e(PAlice,DBob) = SBob.

Security: P, PAlice = aP, PBob= bPandPPKG = sPare known to
everybody. The task is to computee(P,P)abs. Alice knowsDAlice = asPand
Bob knowsDBob= bsP, so they can computee(P,P)abs. An eavesdropper
cannot compute this quantity (BDHP assumption).

One-Round Three-Party Key Agreement

Proposed by Joux (2004).

Setup phase:Same as before (r,G,G′,P,e).

Key-agreement phase:

Alice choosesa∈R Z∗
r and broadcastsaP to Bob and Carol.

Bob choosesb∈R Z∗
r and broadcastsbP to Alice and Carol.

Carol choosesc∈R Z∗
r and broadcastscP to Alice and Bob.

Alice computese(bP,cP)a = e(P,P)abc.

Bob computese(aP,cP)b = e(P,P)abc.

Carol computese(aP,bP)c = e(P,P)abc.

Security: A passive eavesdropper knowsP,aP,bP,cPonly and cannot
computee(P,P)abc (BDHP assumption).

Paterson’s Identity-Based Signatures

First IBS scheme was proposed and realized by Shamir (1984).

Many pairing-based IBS schemes are known.

Paterson’s IBS scheme (2002) is an adaptation of ElGamal signatures.

Setup phase:Domain parametersr,G,G′,P,eand PKG’s keyss and
PPKG = sPare as earlier. Hash functions:H1 = {0,1}∗ → G,
H2 : {0,1}∗ → Zr andH3 : G→ Zr .

Key-generation phase:

Bob’s public key isPBob= H1(bob@p.b.cr)

Bob’s private key isDBob= sPBob

Paterson’s Identity-Based Signatures (Contd)

Signing: Bob’s signature on messageM is (S,T), where:

d′ ∈R Zr ,

S = d′P,

T = d′−1(H2(M)P−H3(S)DBob).

Verification: Bob’s signature(S,T) onM is verified if and only if

e(P,P)H2(M) = e(S,T)e(Ppub,PBob)
H3(S).

Correctness:H2(M)P= d′T+H3(S)DBob= d′T+H3(S)sPBob, so

e(P,P)H2(M) = e(P,H2(M)P) = e(P,d′T+H3(S)sPBob)

= e(P,d′T)e(P,H3(S)sPBob) = e(d′P,T)e(sP,PBob)
H3(S)

= e(S,T)e(Ppub,PBob)
H3(S).

Security: Similar to ElGamal signatures.

BLS Short Signatures

Proposed by Boneh, Lynn and Shacham (2004).

Uses pairing, but not identity-based.

Smaller signatures than DSA or ECDSA at the same security level.

Setup phase:

GroupsG1,G2,G3 of prime orderr (with G1 6= G2)

Pairing mape : G1×G2 → G3

A generatorQ of G2

Hash functionH : {0,1}∗ → G1

Key-generation phase:

Bob’s private key:d∈R Zr

Bob’s public key:Y= dQ∈ G2

Notes:

Does not involve a PKG

G1 = G2 may fail to give same security as DSA

BLS Short Signatures (Contd)

Signing: Bob’s signature onM is S= dH(M).

Verification: Check whethere(S,Q) = e(H(M),Y).

Correctness:e(S,Q) = e(dH(M),Q) = e(H(M),dQ) = e(H(M),Y).

Security:

Signature verification is easy, since the Co-DDHP is easy forG1,G2.

Signature forging is difficult, since the Co-DHP is difficult.

Any pair of gap Diffie–Hellman (GDH) groupsG1,G2 can be used to implement
the BLS scheme.

References
Blake, Seroussi and Smart,Advances in Elliptic Curve Cryptography, Cambridge, 2005.

Boneh and Franklin,Identity Based Encryption from the Weil Pairing, Crypto 2001.

Boneh, Lynn and Shacham,Short Signatures from the Weil Pairing, Jl of Cryptology, 2004.

Das,Computational Number Theory, CRC Press, 2013.

Charlap and Robbins,An Elementary Introduction to Elliptic Curves, CRD Report, 1988.

Charlap and Coley,An Elementary Introduction to Elliptic Curves II, CCR Report, 1990.

Cohen, Frey, Avanzi, Doche, Lange, Nguyen and Vercauteren,Handbook of Elliptic and Hyperelliptic
Curve Cryptography, CRC Press, 2006.

Enge,Elliptic Curves and Their Applications to Cryptography, Kluwer, 1999.

Freeman, Scott and Teske,A Taxonomy of Pairing-Friendly Elliptic Curves, Jl of Cryptology, 2010.

Hankerson, Menezes and Vanstone,Guide to Elliptic Curve Cryptography, Springer, 2004.

Joux,A One-Round Protocol for Tripartite Diffie–Hellman, ANTS-4, 2004.

Martin, Introduction to Identity-Based Encryption, Artech House, 2008.

Miller, The Weil Pairing, and Its Efficient Calculation, Jl of Cryptology, 2004.

Paterson,ID-Based Signatures from Pairings on Elliptic Curves, Electronics Letters, 2002.

Sakai, Ohgishi and Kasahara,Cryptosystems Based on Pairing, SCIS 2000.

Thanks for Your Attention!

For future:abhij@cse.iitkgp.ernet.in

PART 6

ECDSA BATCH VERIFICATION

ECDSA Revisited: Parameters

We work over the prime fieldFq.

E : y2 = x3+ax+b is an elliptic curve defined overFq.

Assume thatn= |E(Fq)| is prime.

P is an arbitrary point of ordern in E(Fq).

|n−q−1| 6 2
√

q.

If n< q, an integer reduced modulon may have two moduloq values. The
fraction of such integers is very small. So we ignore this.

Signer’s permanent key

Private keyd∈R Zn.

Public keyQ= dP.

DL assumption: It is infeasible to computed from P andQ.

ECDSA Signatures Revisited

Signature generation

k∈R [1,n−1] (the session key)

R= kP

r = x(R) (modn)

s= k−1(m+dr) (modn), wherem= H(M)

(M, r,s) is the signed message

Signature verification

w= s−1 (modn)

u= mw(modn)

v= rw (modn)

R= uP+vQ∈ E(Fq)

Accept if and only ifx(R) = r (modn)

ECDSA Signatures: Examples

For illustration, we work with an artificially small example.

q= 991

E : y2 = x3+x+23 defined overF991

n= |E(F991)|= 997

P= (1,5) ∈ E(F991) is a point of order 997

Private keyd= 737

Public keyQ= dP= (272,437)

ECDSA Signatures: Examples

Example 1 Example 2 Example 3
m1 = 123 m2 = 561 m3 = 288

Signature generation
k1 = 523 k2 = 755 k3 = 593
R1 = k1P= (476,617) R2 = k2P= (183,212) R3 = k3P= (149,56)
r1 = 476 r2 = 183 r3 = 149
s1 = 549 s2 = 528 s3 = 569

Signature verification
w1 = s−1

1 = 385 w2 = s−1
2 = 338 w3 = s−1

3 = 198
u1 = m1w1 = 496 u2 = m2w2 = 188 u3 = m3w3 = 195
v1 = r1w1 = 809 v2 = r2w2 = 40 v3 = r3w3 = 589
R1 = u1P+v1Q= (476,617) R2 = u2P+v2Q= (183,212) R3 = u3P+v3Q= (149,56)

Signature generation needs one scalar multiplication.

Signature verification needs two scalar multiplications.

Practical improvements:

Use double scalar multiplication.

P is a system-wide fixed parameter.

If Q is fixed too, use double fixed-base scalar multiplication.

Batch Verification

Verify multiple signatures together at a time less than the total individual
verification time

Applicable when most of the available signatures are valid

Useful in resource-constrained and/or real-time systems

Security issue: One or more invalid signatures in a batch may go unnoticed

The attacker may inject carefully crafted forged signatures in a batch

Safeguards needed against such attacks

To verify a batch oft ECDSA signatures(r1,s1), (r2,s2), . . . , (rt,st).

Ri = (xi ,yi), sor i = xi (modn). We assume thatxi = r i for all i.

Q is fixed in a batch but varies across different batches, so precomputations
based onQ may be ineffective, particularly for small batches

The Problem in ECDSA Batch Verification

The i-th verification equation isRi = uiP+viQ.

These equations can be combined as

t

∑
i=1

Ri =

(

t

∑
i=1

ui

)

P+

(

t

∑
i=1

vi

)

Q.

This boils down to onlytwoscalar multiplication for a batch of any sizet.

But how do we compute the left hand side∑t
i=1Ri?

ECDSA signatures present only thex-coordinatesxi = r i = x(Ri).

ECDSA∗: A non-standard variant of ECDSA in which the entire pointsRi

are included (instead of onlyr i) in the signatures.

For ECDSA∗, the above algorithm works without any problem.

A Naive Approach to Solve the Problem

y2
i = x3

i +axi +b (modq).

yi is a modular square root of the right hand side.

Square-root computations are costly.

In general, there are two square roots ofx3
i +axi +b.

Try all of the 2t combinations of thesignsof the square roots. If any of the
combinations satisfies the verification equation, accept.

Checking 2t−1 combinations actually suffices. There are 2t−1 possibilities
of thex-coordinates of±R1±R2±·· ·±Rt.

ECDSA#: A non-standard variant of ECDSA in which an extra bit is
appended to an ECDSA signature for identifying the correct square root.

For ECDSA#, only one of the 2t combinations need to be checked.

The naive approach is usually the fastest batch-verification algorithm for
ECDSA#.

The Naive Algorithm: Example

Consider the three signatures(476,549),(183,528),(149,569).

The square roots of 4763+476+23 are 374,617. TakeR1 = (476,374).

The square roots of 1833+183+23 are 212,779. TakeR2 = (183,212).

The square roots of 1493+149+23 are 56,935. TakeR3 = (149,56).

The right hand side of the verification equation is(539,347).

We have the following elliptic-curve sums:

R1+R2+R3 = (117,895).

R1+R2−R3 = (342,505).

R1−R2+R3 = (990,608).

R1−R2−R3 = (539,644) =−(539,347).

Therefore,−R1+R2+R3 = (539,347), and the batch is verified.

What about Standard ECDSA Signatures?

To avoid the time fort modular square-root computations

Replace this by something faster

Eliminate theunknown y-coordinatesyi = y(Ri)

Three elimination possibilities

Linearization

Algebraic elimination

Use of summation polynomials

The first two methods are based on symbolic manipulations, where
y1,y2, . . . ,yt are treated as symbols satisfyingy2

i = x3
i +axi +b (modq)

The third method is based on resultant computations

Analyses and experiments reveal significant practical improvements

Open question: Can we make elimination faster thanO(2t) time?

Algorithm S1: Elimination by Linearization

The verification equation is∑t
i=1Ri = (∑t

i=1ui)P+(∑t
i=1vi)Q.

Stage 1:Compute the right hand side numerically by a double scalar
multiplication (fixed-base if applicable). Let this point be(α ,β).

Stage 2:Compute the left hand side symbolically, and express the
symbolic sum as a pair(Rx,Ry) of polynomials iny1,y2, . . . ,yt. The largest
yi-degree in bothRx andRy is 1 (sincey2

i can be substituted by the explicit
valuex3

i +axi +b). Moreover,Rx consists non-zero terms of even total
degrees, andRy consists of non-zero terms of odd total degrees.

Stage 3:We haveRx(y1,y2, . . . ,yt) = α . By successively squaring this
equation or multiplying by even-degree monomials, generate a system of
equations, each linear with respect to the even-degree monomials.

Stage 4:Solve the system to get the values of all even-degree monomials.

Stage 5:UseRy(y1,y2, . . . ,yt) = β to solve for individualyi values.

Stage 6:Check whethery2
i = x3

i +axi +b (modq) for all i.

Algorithm S1: Example
The verification equation is(476,y1)+(183,y2)+(149,y3) = (539,347).
First compute(h3,k3) = (476,y1)+(183,y2):

λ = (y2−y1)/(183−476) = 115y1+876y2.

λ 2 = 342y2
1+307y1y2+342y2

2 = 307y1y2+478.

h3 = λ 2−x1−x2 = 307y1y2+810.

k3 = λ (x1−h3)−y1 = 371y2
1y2+620y1y2

2+238y1+752y2 = 580y1+42y2.

Then compute(h4,k4) = (h3,k3)+(149,y3):
λ = (y3−k3)/(149−h3) = (411y1+949y2+y3)/(684y1y2+330)
= (411y1+949y2+y3)(684y1y2−330)/(6842y2

1y2
2−3302)

= 987y1y2y3+904y1+57y2+906y3.

h4 = λ 2−h3−x3 = 16y2
1y2

2y2
3+696y2

1y2y3+632y2
1+535y1y22y3

+680y1y2y2
3+676y1y2+916y1y3+276y2

2+220y2y3+288y2
3+32

= 524y1y2+332y1y3+58y2y3+497.

k4 = λ (h3−h4)−k3 = 342y1y2y3+227y1+491y2+152y3.

Thus, we have:
524y1y2+332y1y3+58y2y3+497= 539.

342y1y2y3+227y1+491y2+152y3 = 347.

Algorithm S1: Example (Contd)

First equation: 524y1y2+332y1y3+58y2y3 = 82.

Generate the second equation:

Multiplying by y1y2 gives 524y2
1y2

2+332y2
1y2y3+58y1y2

2y3 = 82y1y2.

This simplifies to 949y1y2+422y1y3+572y2y3 = 158.

Generate the third equation:

Multiplying by y1y3 gives 949y2
1y2y3+422y2

1y3
3+572y1y2y2

3 = 158y1y3.

This simplifies to 82y1y2+833y1y3+847y2y3 = 445.

The linearized system is:





524 332 58
949 422 572
82 833 847









y1y2

y1y3

y2y3



=





42
158
445



.

The solution of this system is:y1y2 = 983,y1y3 = 858,y2y3 = 971.

Algorithm S1: Example (Contd)

We also have 342y1y2y3+227y1+491y2+152y3 = 347.

Multiply by y1 to get 342y2
1y2y3+227y2

1+491y1y2+152y1y3 = 347y1.

Simplification gives 347y1 = 43, that is,y1 = 617.

y2 = (y1y2)/y1 = 212.

y3 = (y1y3)/y1 = 56.

Therefore,y2
1 = 145,y2

2 = 349, andy2
3 = 163.

Moreover,x3
1+x1+23= 145,x3

2+x2+23= 349, andx3
3+x3+23= 163.

Algorithm S1: Remarks

This is perhaps not too impressive.

This is too much computation.

We have to deal with all even-degree monomials iny1,y2, . . . ,yt.

There are 2t−1−1 of them.

Solving the dense linearized system needsO(23t) field operations.

But this is the beginning.

We at least have an understanding of the potentials of symbolic
computations.

Algorithm S1′: Reduction in Monomial Count

Need to reduce the number of monomials in the linearized system.

Numerically compute the right hand side of the batch-verification equation.
Let this point be(α ,β).

Let τ = ⌈t/2⌉. Rewrite the verification equation as:

τ

∑
i=1

Ri = (α ,β)−
t

∑
i=τ+1

Ri .

Compute both sides of the rewritten equation symbolically.

Linearize by successive squaring.

The variables in the linearized system are all even-degree square-free
monomials iny1,y2, . . . ,yτ , and all square-free monomials in
yτ+1,yτ+2, . . . ,yt.

DoesO(t3/2) field operations—still poorer than naive exhaustive search.

Algorithm S1′: Example

Rewrite the verification equation as
(476,y1)+(183,y2) = (539,347)+(149,−y3).

Compute the left hand side as(h3,k3) as in S1. We have:

h3 = 307y1y2+810, and

k3 = 580y1+42y2.

Compute the right hand side as(h4,k4):

λ = (347+y3)/(539−149) = 836y3+720.

λ 2 = (2×836×720)y3+(8362y2
3+7202) = 766y3+741.

h4 = λ 2−539−149= 766y3+53.

k4 = l(149−h4)+y3 = 801y2
3+453y3+741= 453y3+492.

Equate the two sides:

307y1y2+810= 766y3+53.

580y1+42y2 = 453y3+492.

Algorithm S1′: Example (Contd)

Now, we have two variablesy1y2 andy3.

First equation: 307y1y2+810= 766y3+53.

Second equation: Square the first equation to get
849y1y2+768= 925y3+645.

The linearized system is:

(

307 225
849 66

)(

y1y2

y3

)

=

(

234
868

)

.

Solve this to gety1y2 = 983 andy3 = 56.

We also have 580y1+42y2 = 453y3+492. Multiply both sides byy1 to get
(453y3+492)y1 = 580y2

1+42y1y2, that is,y1 = 617.

y2 = (y1y2)/y1 = 212.

Algorithm S2: Algebraic Elimination

The verification equation is∑t
i=1Ri = (∑t

i=1ui)P+(∑t
i=1vi)Q.

Stage 1:Compute the right hand side(α ,β) numerically.

Stage 2:Compute the left hand side symbolically as a pair
(Rx(y1,y2, . . . ,yt),Ry(y1,y2, . . . ,yt)) of polynomials with square-free
monomials.

Stage 3:Setφ = Rx−α . For i = 1,2, . . . , t, repeat:

Write φ = u(yi+1,yi+2, . . . ,yt)+yiv(yi+1,yi+2, . . . ,yt).

Setφ to (u−yiv)φ = u2+y2
i v2.

Substitute ally2
j for j = i, i +1, . . . , t.

Accept the batch if and only ifφ is reduced to zero.

Algorithm S2: Example

Consider the same example(476,y1)+(183,y2)+(149,y3) = (539,347).

As in Algorithm S1, the left hand side has thex-coordinate
524y1y2+332y1y3+58y2y3+497.

Setφ = 524y1y2+332y1y3+58y2y3+497−539=
524y1y2+332y1y3+58y2y3+949= (524y2+332y3)y1+(58y2y3+497).

Updateφ to (524y2+332y3)
2y2

1− (58y2y3+497)2 =
600y2

2y2
3+95y2

2+809y2y3+623y2
3+218= 809y2y3+324.

Updateφ to (809y3)
2y2

2−3242 = 0.

Algorithm S2′: Faster Variant of S2

Compute(α ,β) as in Algorithm S2.

Let τ = ⌈t/2⌉. Rewrite the verification equation as
∑τ

i=1Ri = (α ,β)−∑t
i=τ+1Ri .

Compute the two sides of the rewritten equation symbolically. Let
R(1)

x (y1,y2, . . . ,yτ) andR(2)
x (yτ+1,yτ+2, . . . ,yt) be thex-coordinates of the

two sides.

Setφ = R(1)
x −R(2)

x .

Eliminatey1,y2, . . . ,yt from φ as in Algorithm S2.

Accept the batch if and only ifφ is reduced to zero.

Algorithm S2′: Example

Rewrite the verification equation as

(476,y1)+(183,y2) = (539,347)+(149,−y3).

Symbolic computation gives thex-coordinates of the two sides as
307y1y2+810 and 766y3+53.

Start with

φ = (307y1y2+810)− (766y3+53) = (307y2)y1+(225y3+757).

Updateφ to

(307y2)
2y2

1−(225y3+757)2 = 215y2
2+907y2

3+254y3+740= 254y3+641.

Updateφ to 2542y2
3−6412 = 0.

Algorithms S2 and S2′: Remarks

Elimination stage is made efficient.

Much faster than Algorithms S1 and S1′.

Practical for batch sizes up to six or seven.

Theoretically poorer than naive exhaustive search by a factor oft2.
(Algorithm S1′ is poorer by a factor of 2t/2.)

Algorithm SP

This achieves a running time ofO(2t) field operations.

Summation polynomials (introduced by Semaev) are recursively defined as:

f2(x1,x2) = x1−x2,

f3(x1,x2,x3) = (x1−x2)
2x3

2−2((x1+x2)(x1x2+a)+2b)x3+

((x1x2−a)2−4b(x1+x2)),

ft(x1,x2, . . . ,xt) = ResT(ft−k(x1, . . . ,xt−k−1,T), fk+2(xt−k, . . . ,xt,T))

for t > 4 and for anyk in the range 16 k6 t−3.

ResT is the resultant of two polynomials with respect to the variableT.

Let x1,x2, . . . ,xt ∈ Fq. Then,ft(x1,x2, . . . ,xt) = 0 if and only if there exist
y1,y2, . . . ,yt ∈ Fp such that(xi ,yi) lie on the curve for alli = 1,2, . . . , t, and
we have the following sum in the elliptic-curve groupE(Fp):

(x1,y1)+(x2,y2)+ · · ·+(xt,yt) = O.

Algorithm SP (Contd)

Write the verification equation as∑t
i=1(xi ,yi)+(α ,−β) = O.

This is true if and only ifft+1(x1,x2, . . . ,xt,α) = 0.

Recursion tree fort = 5:

f6(x1,x2,x3,x4,x5,α)

→ f4(x1,x2,x3,T)

→ f3(x1,x2,T1)

→ f3(x3,T,T1)

→ f4(x4,x5,α ,T)

→ f3(x4,x5,T2)

→ f3(α ,T,T2)

Practical for batch sizes up to ten.

Replace the last resultant calculation by a gcd computation for practical
benefits.

Algorithm SP: Example

Write the verification equation as

(476,y1)+(183,y2)+(149,y3)+(539,−347) = O.

Compute

f4(476,183,149,539)

= ResT(f3(476,183,T), f3(149,539,T))

= ResT(623T2+569T+114,477T2+970T+658)

= 0.

In fact, gcd(623T2+569T+114,477T2+970T+658) = T+655.

Security Issues

An attacker capable of forging ECDSA∗ (or ECDSA#) batches can trivially
forge ECDSA batches too.

Suppose that the attacker is capable of forging ECDSA batches that pass
our batch-verification algorithms.

The attacker can uniquely reconstruct the missingy-coordinates.

The naive, S1 and S1′ algorithms indeed do so.

S2 and S2′ can be extended to do the same task.

For small batch sizes, these algorithms are feasible.

So the attacker can forge ECDSA∗ (or ECDSA#) batches.

Our algorithms do not compromise security—relative to straightforward
ECDSA∗ batch verification.

The security concerns do not end here.

Need for Randomization

An attacker can injectk faulty signatures in a batch of sizet.

The attacker needs to arrange the following:

R1+R2+ · · ·+Rk = O.

m1s−1
1 +m2s−1

2 + · · ·+mks
−1
k = 0 (modn).

r1s−1
1 + r2s−1

2 + · · ·+ rks
−1
k = 0 (modn).

The effect of thesek forged signatures on both sides of the verification
equation is zero.

For example, the attacker may takem1 = m2, r1 = r2 ands1 =−s2. This
corresponds toR2 =−R1.

In general, the attacker first choosesR1,R2, . . . ,Rk, and fixesr1, r2, . . . , rk.
The attacker then choosesm1,m2, . . . ,mk. The attacker finally arranges any
solution of the above two modulon congruences fors−1

1 ,s−1
2 , . . . ,s−1

k .

Randomization destroys the above three relations with high probability.

What is Randomization?

Choose random multipliersξ1,ξ2, . . . ,ξt during batch verification.

Now, the attacker must arrange the following three relationsa priori.

ξ1R1+ξ2R2+ · · ·+ξkRk = O.

ξ1m1s−1
1 +ξ2m2s−1

2 + · · ·+ξkmks
−1
k = 0 (modn).

ξ1r1s−1
1 +ξ2r2s−1

2 + · · ·+ξkrks
−1
k = 0 (modn).

If l-bit randomizers are used, the probability of a successful attack is 2−l .

One can takel = |q|/2 since square-root methods for solving the ECDLP
imply only this much security.

Another possibility:l = 128.

Randomization of ECDSA Batches

The verification equation now modifies to:

t

∑
i=1

ξiRi =

(

t

∑
i=1

ξiui

)

P+

(

t

∑
i=1

ξivi

)

Q.

The right hand side again poses no difficulty.

The left hand side appears to be irreparably affected, because only the
x-coordinates ofRi are available.

Rescue: Given onlyx(R) and a multiplierξ , thex-coordinatex(ξR) can be
uniquely determined andefficientlycomputed.

Replace the pointsRi by ξiRi , and run the batch-verification algorithms.
Now, the symbolsyi arey(ξiRi).

We need good algorithms to computex(ξR) from x(R) andξ .

Montgomery Ladders Revisited

Suppose thatx(P1) = h1, x(P2) = h2 andx(P1−P2) = h4 are known.

We can computeh3 = x(P1+P2) andh5 = x(2P1) as:

h3h4(h1−h2)
2 = (h1h2−a)2−4b(h1+h2).

4h5(h
3
1+ah1+b) = (h2

1−a)2−8bh1.

Montgomery ladder for computingx(ξR):

Initialize x(S) := x(R) andx(T) := x(2R).

For (i = l −2, l −3, . . . ,1,0) {
If (ξi = 0), assignx(T) := x(T+S) andx(S) := x(2S),

else assignx(S) := x(T+S) andx(T) := x(2T).

}
Returnx(S)

Loop invariance:T = S+R.

Montgomery Ladders: Example

TakeR= (476,y) andξ = 97= (1100001)2.

Montgomery iterations:

Bit position Bit value S T x(S) x(T)
6 1 R 2R 476 467
5 1 3R 4R 676 544
4 0 6R 7R 679 441
3 0 12R 13R 875 447
2 0 24R 25R 218 200
1 0 48R 49R 962 740
0 1 97R 98R 514 140

Seminumeric Randomization

Let R= (r,y) with r known andy unknown.

Any non-zero multipleuRof Rcan be expressed as(h,ky), whereh andk
are field elements fully determined byr andu.

For R itself, h= r andk= 1.

−(h,ky) = (h,(−k)y).

Let P1 = (h1,k1y) andP2 = (h2,k2y) with P1 6=±P2. Then,P3 = (h3,k3y):

h3 =

(

k1−k2

h1−h2

)2

(r3+ar+b)−h1−h2, andk3 =

(

k1−k2

h1−h2

)

(h1−h3)−k1.

We haveP4 = 2P1 = (h4,k4y):

h4 =

(

3h2
1+a

2k1

)2(
1

r3+ar+b

)

−2h1, andk4 =

(

3h2
1+a

2k1

)(

h1−h4

r3+ar+b

)

−k1.

Represent the multiple(h,ky) of Rby the pair(h,k) of field elements.

Seminumeric Randomization: Algorithm

Precompute the field elementsr3+ar+b and(r3+ar+b)−1.

Initialize S:= (r,1).

For (i = l −2, l −3, . . . ,1,0) {
AssignS:= 2Susing seminumeric doubling.

If (ξi = 1), assignS:= S+Rusing seminumeric addition.

}
ReturnS(or the first component ofS).

This is slightly slower than scalar multiplication.

Seminumeric Randomization: Example

TakeR= (476,y) andξ = 97= (1100001)2.

Seminumeric iterations:

Bit position Bit value Operation S h k
6 1 Init R 476 1
5 1 Double 2R 467 553

Add 3R 676 704
4 0 Double 6R 679 348
3 0 Double 12R 875 82
2 0 Double 24R 218 834
1 0 Double 48R 962 57
0 1 Double 96R 692 513

Add 97R 514 643

Comparison of Randomization Methods

Montgomery ladders use one doubling and one addition in each iteration.

The seminumeric method does addition only for one bits.

No effective windowed variant is known for Montgomery ladders.

The seminumeric method readily adapts to any windowed variant.

Montgomery ladders are robust against simple side-channel attacks.

Neither the Montgomery-ladder method nor the seminumeric method is
known to have an effective multiple-scalar-multiplication algorithm.

The seminumeric method is practically faster than Montgomery ladders
except for very small randomizers.

Overheads of Randomization

Let SM be the time of one unwindowed full-length scalar multiplication.

Randomization requires roughlyt half-length scalar multiplications.

4-NAF seminumeric half-length scalar multiplication takes2
5 SM time.

Double scalar multiplication takes76 SM time on an average.

Preparing each fixed-base precomputation table takes2
3 SM time.

Double fixed-base scalar multiplication takes1
2 SM time on an average.

Let BV denote the batch-verification time.

Verification type Time for verifyingt signatures

Individual (no fixed-base)
(

7t
6

)

SM

Individual (fixed-base)
(

4
3 +

t
2

)

SM

Batch without randomization
(

7
6

)

SM + BV

Batch with randomization
(

2t
5 + 7

6

)

SM + BV

Final Remarks

For ECDSA#, it is preferable to use arbitrarily scalable naive batch
verification, particularly for large batch sizes.

For standard ECDSA, Algorithm SP with the seminumeric randomization
method gives the best practical performance fort 6 10.

If enough memory is available, individual verification using fixed-base
double scalar multiplication may outperform batch verification except for
small batch sizes.

It is fairly straightforward to adapt the batch-verification algorithms to
other types of curves, like Koblitz curves and Edwards curves.

It remains unsolved whether batch verification can be done ino(2t) time.

No proposed batch-verification algorithm supplies speedup in the case of
multiple signers, particularly when randomization is used.

References for Part 6

Sabyasachi Karati, Abhijit Das, Dipanwita Roychowdhury, Bhargav Bellur, Debojyoti Bhattacharya
and Aravind Iyer,Batch Verification of ECDSA Signatures, 5th International Conference on Cryptology
in Africa (AfricaCrypt 2012), Lecture Notes in Computer Science #7374, pp 1–18, Jul 10–12, 2012,
Ifrane, Morocco.

Sabyasachi Karati, Abhijit Das, Dipanwita Roychowdhury, Bhargav Bellur, Debojyoti Bhattacharya
and Aravind Iyer,New Algorithms for Batch Verification of Standard ECDSA Signatures, Journal of
Cryptographic Engineering, DOI: 10.1007/s13389-014-0082-x, Volume 4, Issue 4, pp 237–258,
Springer-Verlag, November 2014 (online publication dated 26 July 2014).

Sabyasachi Karati and Abhijit Das,Faster Batch Verification of Standard ECDSA Signatures Using
Summation Polynomials, 12th International Conference on Applied Cryptography and Network
Security (ACNS 2014), Lecture Notes in Computer Science #8479, pp 438–456, Jun 10–13, 2014,
Lausanne, Switzerland.

Sabyasachi Karati, Abhijit Das and Dipanwita Roychowdhury, Randomized Batch Verification of
Standard ECDSA Signatures, 4th International Conference on Security, Privacy, and Applied
Cryptography Engineering (SPACE 2014), Lecture Notes in Computer Science #8804, pp 237–255,
Oct 18–22, 2014, Pune, India.

Sabyasachi Karati and Abhijit Das,Batch Verification of EdDSA Signatures, 4th International
Conference on Security, Privacy, and Applied CryptographyEngineering (SPACE 2014), Lecture Notes
in Computer Science #8804, pp 256–271, Oct 18–22, 2014, Pune,India.

Thanks for Your Attention!

For future:abhij@cse.iitkgp.ernet.in

