Introduction to Cryptography

Dr. Abhijit Das

Indian Institute of Technology, Kharagpur
May 14, 2009

Part I: Overview of cryptographic primitives

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

What is Cryptography?

Cryptographic primitives

What is Cryptography?

- Cryptography is the study of techniques for preventing access to sensitive data by parties who are not authorized to access the data.

Cryptographic primitives

What is Cryptography?

- Cryptography is the study of techniques for preventing access to sensitive data by parties who are not authorized to access the data.
- Cryptanalysis is the study of techniques for breaking cryptographic systems.

Cryptographic primitives

What is Cryptography?

- Cryptography is the study of techniques for preventing access to sensitive data by parties who are not authorized to access the data.
- Cryptanalysis is the study of techniques for breaking cryptographic systems.
- Cryptology = Cryptography + Cryptanalysis

Cryptographic primitives

What is Cryptography?

- Cryptography is the study of techniques for preventing access to sensitive data by parties who are not authorized to access the data.
- Cryptanalysis is the study of techniques for breaking cryptographic systems.
- Cryptology = Cryptography + Cryptanalysis
- Cryptanalysis is useful for strengthening cryptographic primitives.

Cryptographic primitives

What is Cryptography?

- Cryptography is the study of techniques for preventing access to sensitive data by parties who are not authorized to access the data.
- Cryptanalysis is the study of techniques for breaking cryptographic systems.
- Cryptology = Cryptography + Cryptanalysis
- Cryptanalysis is useful for strengthening cryptographic primitives.
- Maintaining security and privacy is an ancient and primitive need.

Cryptographic primitives

What is Cryptography?

- Cryptography is the study of techniques for preventing access to sensitive data by parties who are not authorized to access the data.
- Cryptanalysis is the study of techniques for breaking cryptographic systems.
- Cryptology = Cryptography + Cryptanalysis
- Cryptanalysis is useful for strengthening cryptographic primitives.
- Maintaining security and privacy is an ancient and primitive need.
- Particularly relevant for military and diplomatic applications.

Cryptographic primitives

What is Cryptography?

- Cryptography is the study of techniques for preventing access to sensitive data by parties who are not authorized to access the data.
- Cryptanalysis is the study of techniques for breaking cryptographic systems.
- Cryptology = Cryptography + Cryptanalysis
- Cryptanalysis is useful for strengthening cryptographic primitives.
- Maintaining security and privacy is an ancient and primitive need.
- Particularly relevant for military and diplomatic applications.
- Wide deployment of the Internet makes everybody a user of cryptographic tools.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Message encryption

Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Message encryption

- Required for secure transmission of messages over a public channel.

Cryptographic primitives

Message encryption

- Required for secure transmission of messages over a public channel.
- Alice wants to send a plaintext message M to Bob.

Cryptographic primitives

Message encryption

- Required for secure transmission of messages over a public channel.
- Alice wants to send a plaintext message M to Bob.
- Alice encrypts M to generate the ciphertext message $C=f_{e}\left(M, K_{e}\right)$.

Cryptographic primitives

Message encryption

- Required for secure transmission of messages over a public channel.
- Alice wants to send a plaintext message M to Bob.
- Alice encrypts M to generate the ciphertext message $C=f_{e}\left(M, K_{e}\right)$.
- K_{e} is the encryption key.

Cryptographic primitives

Message encryption

- Required for secure transmission of messages over a public channel.
- Alice wants to send a plaintext message M to Bob.
- Alice encrypts M to generate the ciphertext message $C=f_{e}\left(M, K_{e}\right)$.
- K_{e} is the encryption key.
- C is sent to Bob over the public channel.

Cryptographic primitives

Message encryption

- Required for secure transmission of messages over a public channel.
- Alice wants to send a plaintext message M to Bob.
- Alice encrypts M to generate the ciphertext message $C=f_{e}\left(M, K_{e}\right)$.
- K_{e} is the encryption key.
- C is sent to Bob over the public channel.
- Bob decrypts C to recover the plaintext message $M=f_{d}\left(C, K_{d}\right)$.

Cryptographic primitives

Message encryption

- Required for secure transmission of messages over a public channel.
- Alice wants to send a plaintext message M to Bob.
- Alice encrypts M to generate the ciphertext message $C=f_{e}\left(M, K_{e}\right)$.
- K_{e} is the encryption key.
- C is sent to Bob over the public channel.
- Bob decrypts C to recover the plaintext message $M=f_{d}\left(C, K_{d}\right)$.
- K_{d} is the decryption key.

Message encryption

- Required for secure transmission of messages over a public channel.
- Alice wants to send a plaintext message M to Bob.
- Alice encrypts M to generate the ciphertext message $C=f_{e}\left(M, K_{e}\right)$.
- K_{e} is the encryption key.
- C is sent to Bob over the public channel.
- Bob decrypts C to recover the plaintext message $M=f_{d}\left(C, K_{d}\right)$.
- K_{d} is the decryption key.
- Knowledge of K_{d} is required to retrieve M from C.

Message encryption

- Required for secure transmission of messages over a public channel.
- Alice wants to send a plaintext message M to Bob.
- Alice encrypts M to generate the ciphertext message $C=f_{e}\left(M, K_{e}\right)$.
- K_{e} is the encryption key.
- C is sent to Bob over the public channel.
- Bob decrypts C to recover the plaintext message $M=f_{d}\left(C, K_{d}\right)$.
- K_{d} is the decryption key.
- Knowledge of K_{d} is required to retrieve M from C.
- An eavesdropper (intruder, attacker, adversary, opponent, enemy) cannot decrypt C.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Secret-key or symmetric encryption

Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Secret-key or symmetric encryption

- $K_{e}=K_{d}$.

Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Secret-key or symmetric encryption

- $K_{e}=K_{d}$.
- Algorithms are fast and suitable for software and hardware implementations.

Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Secret-key or symmetric encryption

- $K_{e}=K_{d}$.
- Algorithms are fast and suitable for software and hardware implementations.
- The common key has to be agreed upon by Alice and Bob before the actual communication.

Cryptographic primitives

Secret-key or symmetric encryption

- $K_{e}=K_{d}$.
- Algorithms are fast and suitable for software and hardware implementations.
- The common key has to be agreed upon by Alice and Bob before the actual communication.
- Each pair of communicating parties needs a secret key.

Secret-key or symmetric encryption

- $K_{e}=K_{d}$.
- Algorithms are fast and suitable for software and hardware implementations.
- The common key has to be agreed upon by Alice and Bob before the actual communication.
- Each pair of communicating parties needs a secret key.
- If there are many communicating pairs, the key storage requirement is high.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Public-key or asymmetric encryption

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Public-key or asymmetric encryption

- $K_{e} \neq K_{d}$.

Cryptographic primitives

Public-key or asymmetric encryption

- $K_{e} \neq K_{d}$.
- Introduced by Rivest, Shamir and Adleman (1978).

Cryptographic primitives

Public-key or asymmetric encryption

- $K_{e} \neq K_{d}$.
- Introduced by Rivest, Shamir and Adleman (1978).
- K_{e} is the public key known to everybody (even to enemies).

Cryptographic primitives

Public-key or asymmetric encryption

- $K_{e} \neq K_{d}$.
- Introduced by Rivest, Shamir and Adleman (1978).
- K_{e} is the public key known to everybody (even to enemies).
- K_{d} is the private key to be kept secret.

Cryptographic primitives

Public-key or asymmetric encryption

- $K_{e} \neq K_{d}$.
- Introduced by Rivest, Shamir and Adleman (1978).
- K_{e} is the public key known to everybody (even to enemies).
- K_{d} is the private key to be kept secret.
- It is difficult to compute K_{d} from K_{e}.

Cryptographic primitives

Public-key or asymmetric encryption

- $K_{e} \neq K_{d}$.
- Introduced by Rivest, Shamir and Adleman (1978).
- K_{e} is the public key known to everybody (even to enemies).
- K_{d} is the private key to be kept secret.
- It is difficult to compute K_{d} from K_{e}.
- Anybody can send messages to anybody. Only the proper recipient can decrypt.

Cryptographic primitives

Public-key or asymmetric encryption

- $K_{e} \neq K_{d}$.
- Introduced by Rivest, Shamir and Adleman (1978).
- K_{e} is the public key known to everybody (even to enemies).
- K_{d} is the private key to be kept secret.
- It is difficult to compute K_{d} from K_{e}.
- Anybody can send messages to anybody. Only the proper recipient can decrypt.
- No need to establish keys a priori.

Cryptographic primitives

Public-key or asymmetric encryption

- $K_{e} \neq K_{d}$.
- Introduced by Rivest, Shamir and Adleman (1978).
- K_{e} is the public key known to everybody (even to enemies).
- K_{d} is the private key to be kept secret.
- It is difficult to compute K_{d} from K_{e}.
- Anybody can send messages to anybody. Only the proper recipient can decrypt.
- No need to establish keys a priori.
- Each party requires only one key-pair for communicating with everybody.

Cryptographic primitives

Public-key or asymmetric encryption

- $K_{e} \neq K_{d}$.
- Introduced by Rivest, Shamir and Adleman (1978).
- K_{e} is the public key known to everybody (even to enemies).
- K_{d} is the private key to be kept secret.
- It is difficult to compute K_{d} from K_{e}.
- Anybody can send messages to anybody. Only the proper recipient can decrypt.
- No need to establish keys a priori.
- Each party requires only one key-pair for communicating with everybody.
- Algorithms are slow, in general.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Real-life analogy

Real-life analogy

Symmetric encryption

- Alice locks the message in a box by a key.
- Bob uses a copy of the same key to unlock.

Real-life analogy

Symmetric encryption

- Alice locks the message in a box by a key.
- Bob uses a copy of the same key to unlock.

Asymmetric encryption

- Alice presses a self-locking padlock in order to lock the box. The locking process does not require a real key.
- Bob has the key to open the padlock.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Using symmetric and asymmetric encryption together

Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Using symmetric and asymmetric encryption together

- Alice reads Bob’s public key K_{e}.

Cryptographic primitives

Using symmetric and asymmetric encryption together

- Alice reads Bob's public key K_{e}.
- Alice generates a random secret key K.

Using symmetric and asymmetric encryption together

- Alice reads Bob's public key K_{e}.
- Alice generates a random secret key K.
- Alice encrypts M by K to generate $C=f_{e}(M, K)$.

Using symmetric and asymmetric encryption together

- Alice reads Bob's public key K_{e}.
- Alice generates a random secret key K.
- Alice encrypts M by K to generate $C=f_{e}(M, K)$.
- Alice encrypts K by K_{e} to generate $L=f_{E}\left(K, K_{e}\right)$.

Using symmetric and asymmetric encryption together

- Alice reads Bob's public key K_{e}.
- Alice generates a random secret key K.
- Alice encrypts M by K to generate $C=f_{e}(M, K)$.
- Alice encrypts K by K_{e} to generate $L=f_{E}\left(K, K_{e}\right)$.
- Alice sends (C, L) to Bob.

Using symmetric and asymmetric encryption together

- Alice reads Bob's public key K_{e}.
- Alice generates a random secret key K.
- Alice encrypts M by K to generate $C=f_{e}(M, K)$.
- Alice encrypts K by K_{e} to generate $L=f_{E}\left(K, K_{e}\right)$.
- Alice sends (C, L) to Bob.
- Bob recovers K as $K=f_{D}\left(L, K_{d}\right)$.

Using symmetric and asymmetric encryption together

- Alice reads Bob's public key K_{e}.
- Alice generates a random secret key K.
- Alice encrypts M by K to generate $C=f_{e}(M, K)$.
- Alice encrypts K by K_{e} to generate $L=f_{E}\left(K, K_{e}\right)$.
- Alice sends (C, L) to Bob.
- Bob recovers K as $K=f_{D}\left(L, K_{d}\right)$.
- Bob decrypts C as $M=f_{d}(C, K)$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Key agreement or key exchange

Real-life analogy

Cryptographic primitives

Key agreement or key exchange

Real-life analogy

- Alice procures a lock L with key K. Alice wants to send K to Bob for a future secret communication.

Cryptographic primitives

Key agreement or key exchange

Real-life analogy

- Alice procures a lock L with key K. Alice wants to send K to Bob for a future secret communication.
- Alice procures another lock L_{A} with key K_{A}.

Cryptographic primitives

Key agreement or key exchange

Real-life analogy

- Alice procures a lock L with key K. Alice wants to send K to Bob for a future secret communication.
- Alice procures another lock L_{A} with key K_{A}.
- Bob procures a lock L_{B} with key K_{B}.

Key agreement or key exchange

Real-life analogy

- Alice procures a lock L with key K. Alice wants to send K to Bob for a future secret communication.
- Alice procures another lock L_{A} with key K_{A}.
- Bob procures a lock L_{B} with key K_{B}.
- Alice puts K in a box, locks the box by L_{A} using K_{A}, and sends the box to Bob.

Key agreement or key exchange

Real-life analogy

- Alice procures a lock L with key K. Alice wants to send K to Bob for a future secret communication.
- Alice procures another lock L_{A} with key K_{A}.
- Bob procures a lock L_{B} with key K_{B}.
- Alice puts K in a box, locks the box by L_{A} using K_{A}, and sends the box to Bob.
- Bob locks the box by L_{B} using K_{B}, and sends the doubly-locked box back to Alice.

Key agreement or key exchange

Real-life analogy

- Alice procures a lock L with key K. Alice wants to send K to Bob for a future secret communication.
- Alice procures another lock L_{A} with key K_{A}.
- Bob procures a lock L_{B} with key K_{B}.
- Alice puts K in a box, locks the box by L_{A} using K_{A}, and sends the box to Bob.
- Bob locks the box by L_{B} using K_{B}, and sends the doubly-locked box back to Alice.
- Alice unlocks L_{A} by K_{A} and sends the box again to Bob.

Key agreement or key exchange

Real-life analogy

- Alice procures a lock L with key K. Alice wants to send K to Bob for a future secret communication.
- Alice procures another lock L_{A} with key K_{A}.
- Bob procures a lock L_{B} with key K_{B}.
- Alice puts K in a box, locks the box by L_{A} using K_{A}, and sends the box to Bob.
- Bob locks the box by L_{B} using K_{B}, and sends the doubly-locked box back to Alice.
- Alice unlocks L_{A} by K_{A} and sends the box again to Bob.
- Bob unlocks L_{B} by K_{B} and obtains K.

Key agreement or key exchange

Real-life analogy

- Alice procures a lock L with key K. Alice wants to send K to Bob for a future secret communication.
- Alice procures another lock L_{A} with key K_{A}.
- Bob procures a lock L_{B} with key K_{B}.
- Alice puts K in a box, locks the box by L_{A} using K_{A}, and sends the box to Bob.
- Bob locks the box by L_{B} using K_{B}, and sends the doubly-locked box back to Alice.
- Alice unlocks L_{A} by K_{A} and sends the box again to Bob.
- Bob unlocks L_{B} by K_{B} and obtains K.
- A third party always finds the box locked either by L_{A} or L_{B} or both.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Key agreement or key exchange (contd)

Key agreement or key exchange (contd)

- Alice generates a key pair $\left(A_{e}, A_{d}\right)$.

Key agreement or key exchange (contd)

- Alice generates a key pair $\left(A_{e}, A_{d}\right)$.
- Bob generates a key pair $\left(B_{e}, B_{d}\right)$.

Key agreement or key exchange (contd)

- Alice generates a key pair $\left(A_{e}, A_{d}\right)$.
- Bob generates a key pair $\left(B_{e}, B_{d}\right)$.
- Alice sends her public-key A_{e} to Bob.

Key agreement or key exchange (contd)

- Alice generates a key pair $\left(A_{e}, A_{d}\right)$.
- Bob generates a key pair $\left(B_{e}, B_{d}\right)$.
- Alice sends her public-key A_{e} to Bob.
- Bob sends his public-key B_{e} to Alice.

Key agreement or key exchange (contd)

- Alice generates a key pair $\left(A_{e}, A_{d}\right)$.
- Bob generates a key pair $\left(B_{e}, B_{d}\right)$.
- Alice sends her public-key A_{e} to Bob.
- Bob sends his public-key B_{e} to Alice.
- Alice computes $K_{A B}=f\left(A_{e}, A_{d}, B_{e}\right)$.

Key agreement or key exchange (contd)

- Alice generates a key pair $\left(A_{e}, A_{d}\right)$.
- Bob generates a key pair $\left(B_{e}, B_{d}\right)$.
- Alice sends her public-key A_{e} to Bob.
- Bob sends his public-key B_{e} to Alice.
- Alice computes $K_{A B}=f\left(A_{e}, A_{d}, B_{e}\right)$.
- Bob computes $K_{B A}=f\left(B_{e}, B_{d}, A_{e}\right)$.

Key agreement or key exchange (contd)

- Alice generates a key pair $\left(A_{e}, A_{d}\right)$.
- Bob generates a key pair $\left(B_{e}, B_{d}\right)$.
- Alice sends her public-key A_{e} to Bob.
- Bob sends his public-key B_{e} to Alice.
- Alice computes $K_{A B}=f\left(A_{e}, A_{d}, B_{e}\right)$.
- Bob computes $K_{B A}=f\left(B_{e}, B_{d}, A_{e}\right)$.
- The protocol insures $K_{A B}=K_{B A}$ to be used by Alice and Bob as a shared secret.

Key agreement or key exchange (contd)

- Alice generates a key pair $\left(A_{e}, A_{d}\right)$.
- Bob generates a key pair $\left(B_{e}, B_{d}\right)$.
- Alice sends her public-key A_{e} to Bob.
- Bob sends his public-key B_{e} to Alice.
- Alice computes $K_{A B}=f\left(A_{e}, A_{d}, B_{e}\right)$.
- Bob computes $K_{B A}=f\left(B_{e}, B_{d}, A_{e}\right)$.
- The protocol insures $K_{A B}=K_{B A}$ to be used by Alice and Bob as a shared secret.
- An intruder cannot compute this secret using A_{e} and B_{e} only.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Digital signatures

Digital signatures

- Alice establishes her binding to a message M by digitally signing it.

Digital signatures

- Alice establishes her binding to a message M by digitally signing it.
- Signing: Only Alice has the capability to sign M.

Cryptographic primitives

Digital signatures

- Alice establishes her binding to a message M by digitally signing it.
- Signing: Only Alice has the capability to sign M.
- Verification: Anybody can verify whether Alice's signature on M is valid.

Cryptographic primitives

Digital signatures

- Alice establishes her binding to a message M by digitally signing it.
- Signing: Only Alice has the capability to sign M.
- Verification: Anybody can verify whether Alice's signature on M is valid.
- Forging: Nobody can forge signatures on behalf of Alice.

Cryptographic primitives

Digital signatures

- Alice establishes her binding to a message M by digitally signing it.
- Signing: Only Alice has the capability to sign M.
- Verification: Anybody can verify whether Alice's signature on M is valid.
- Forging: Nobody can forge signatures on behalf of Alice.
- Digital signatures are based on public-key techniques.

Cryptographic primitives

Digital signatures

- Alice establishes her binding to a message M by digitally signing it.
- Signing: Only Alice has the capability to sign M.
- Verification: Anybody can verify whether Alice's signature on M is valid.
- Forging: Nobody can forge signatures on behalf of Alice.
- Digital signatures are based on public-key techniques.
- Signature generation \equiv Decryption (uses private key), and Signature verification \equiv Encryption (uses public key).

Cryptographic primitives

Digital signatures

- Alice establishes her binding to a message M by digitally signing it.
- Signing: Only Alice has the capability to sign M.
- Verification: Anybody can verify whether Alice's signature on M is valid.
- Forging: Nobody can forge signatures on behalf of Alice.
- Digital signatures are based on public-key techniques.
- Signature generation \equiv Decryption (uses private key), and Signature verification \equiv Encryption (uses public key).
- Non-repudiation: An entity should not be allowed to deny valid signatures made by him.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Signature with message recovery

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Signature with message recovery

Generation

Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Signature with message recovery

Generation

- Alice generates a key-pair $\left(K_{e}, K_{d}\right)$, publishes K_{e}, and keeps K_{d} secret.

Signature with message recovery

Generation

- Alice generates a key-pair $\left(K_{e}, K_{d}\right)$, publishes K_{e}, and keeps K_{d} secret.
- Alice signs M by her private key to obtain the signed message $S=f_{s}\left(M, K_{d}\right)$.

Signature with message recovery

Generation

- Alice generates a key-pair $\left(K_{e}, K_{d}\right)$, publishes K_{e}, and keeps K_{d} secret.
- Alice signs M by her private key to obtain the signed message $S=f_{s}\left(M, K_{d}\right)$.

Verification

- Recover M from S by using Alice's public key: $M=f_{v}\left(S, K_{e}\right)$.

Signature with message recovery

Generation

- Alice generates a key-pair $\left(K_{e}, K_{d}\right)$, publishes K_{e}, and keeps K_{d} secret.
- Alice signs M by her private key to obtain the signed message $S=f_{s}\left(M, K_{d}\right)$.

Verification

- Recover M from S by using Alice's public key: $M=f_{v}\left(S, K_{e}\right)$.
Forging signatures
- $K_{d}^{\prime} \neq K_{d}$ is used to generate forged signature $S^{\prime}=f_{s}\left(M, K_{d}^{\prime}\right)$. Verification yields $M^{\prime}=f_{v}\left(S^{\prime}, K_{e}\right) \neq M$.

Signature with message recovery

Generation

- Alice generates a key-pair (K_{e}, K_{d}), publishes K_{e}, and keeps K_{d} secret.
- Alice signs M by her private key to obtain the signed message $S=f_{s}\left(M, K_{d}\right)$.

Verification

- Recover M from S by using Alice's public key: $M=f_{v}\left(S, K_{e}\right)$.
Forging signatures
- $K_{d}^{\prime} \neq K_{d}$ is used to generate forged signature $S^{\prime}=f_{s}\left(M, K_{d}^{\prime}\right)$. Verification yields $M^{\prime}=f_{v}\left(S^{\prime}, K_{e}\right) \neq M$.

Drawback

- Algorithms are slow, not suitable for long messages.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Signature with appendix

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Signature with appendix

Generation

Cryptographic primitives

Signature with appendix

Generation

- Alice generates a key-pair $\left(K_{e}, K_{d}\right)$, publishes K_{e}, and keeps K_{d} secret.

Cryptographic primitives

Signature with appendix

Generation

- Alice generates a key-pair $\left(K_{e}, K_{d}\right)$, publishes K_{e}, and keeps K_{d} secret.
- Alice generates a short representative $m=H(M)$ of M.

Cryptographic primitives

Signature with appendix

Generation

- Alice generates a key-pair $\left(K_{e}, K_{d}\right)$, publishes K_{e}, and keeps K_{d} secret.
- Alice generates a short representative $m=H(M)$ of M.
- Alice uses her private-key: $s=f_{s}\left(m, K_{d}\right)$.

Cryptographic primitives

Signature with appendix

Generation

- Alice generates a key-pair $\left(K_{e}, K_{d}\right)$, publishes K_{e}, and keeps K_{d} secret.
- Alice generates a short representative $m=H(M)$ of M.
- Alice uses her private-key: $s=f_{s}\left(m, K_{d}\right)$.
- Alice publishes (M, s) as the signed message.

Cryptographic primitives

Signature with appendix

Generation

- Alice generates a key-pair $\left(K_{e}, K_{d}\right)$, publishes K_{e}, and keeps K_{d} secret.
- Alice generates a short representative $m=H(M)$ of M.
- Alice uses her private-key: $s=f_{s}\left(m, K_{d}\right)$.
- Alice publishes (M, s) as the signed message.

Verification

Cryptographic primitives

Signature with appendix

Generation

- Alice generates a key-pair $\left(K_{e}, K_{d}\right)$, publishes K_{e}, and keeps K_{d} secret.
- Alice generates a short representative $m=H(M)$ of M.
- Alice uses her private-key: $s=f_{s}\left(m, K_{d}\right)$.
- Alice publishes (M, s) as the signed message.

Verification

- Compute the representative $m=H(M)$.

Cryptographic primitives

Signature with appendix

Generation

- Alice generates a key-pair $\left(K_{e}, K_{d}\right)$, publishes K_{e}, and keeps K_{d} secret.
- Alice generates a short representative $m=H(M)$ of M.
- Alice uses her private-key: $s=f_{s}\left(m, K_{d}\right)$.
- Alice publishes (M, s) as the signed message.

Verification

- Compute the representative $m=H(M)$.
- Use Alice's public-key to generate $m^{\prime}=f_{v}\left(s, K_{e}\right)$.

Cryptographic primitives

Signature with appendix

Generation

- Alice generates a key-pair $\left(K_{e}, K_{d}\right)$, publishes K_{e}, and keeps K_{d} secret.
- Alice generates a short representative $m=H(M)$ of M.
- Alice uses her private-key: $s=f_{s}\left(m, K_{d}\right)$.
- Alice publishes (M, s) as the signed message.

Verification

- Compute the representative $m=H(M)$.
- Use Alice's public-key to generate $m^{\prime}=f_{v}\left(s, K_{e}\right)$.
- Accept the signature if and only if $m=m^{\prime}$.

Cryptographic primitives

Signature with appendix

Generation

- Alice generates a key-pair $\left(K_{e}, K_{d}\right)$, publishes K_{e}, and keeps K_{d} secret.
- Alice generates a short representative $m=H(M)$ of M.
- Alice uses her private-key: $s=f_{s}\left(m, K_{d}\right)$.
- Alice publishes (M, s) as the signed message.

Verification

- Compute the representative $m=H(M)$.
- Use Alice's public-key to generate $m^{\prime}=f_{v}\left(s, K_{e}\right)$.
- Accept the signature if and only if $m=m^{\prime}$.

Forging

- Verification is expected to fail if a key $K_{d}^{\prime} \neq K_{d}$ is used to generate s.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Digital signatures: classification

Cryptographic primitives

Digital signatures: classification

- Deterministic signatures: For a given message the same signature is generated on every occasion the signing algorithm is executed.

Cryptographic primitives

Digital signatures: classification

- Deterministic signatures: For a given message the same signature is generated on every occasion the signing algorithm is executed.
- Probabilistic signatures: On different runs of the signing algorithm different signatures are generated, even if the message remains the same.

Cryptographic primitives

Digital signatures: classification

- Deterministic signatures: For a given message the same signature is generated on every occasion the signing algorithm is executed.
- Probabilistic signatures: On different runs of the signing algorithm different signatures are generated, even if the message remains the same.
- Probabilistic signatures offer better protection against some kinds of forgery.

Cryptographic primitives

Digital signatures: classification

- Deterministic signatures: For a given message the same signature is generated on every occasion the signing algorithm is executed.
- Probabilistic signatures: On different runs of the signing algorithm different signatures are generated, even if the message remains the same.
- Probabilistic signatures offer better protection against some kinds of forgery.
- Deterministic signatures are of two types:

Digital signatures: classification

- Deterministic signatures: For a given message the same signature is generated on every occasion the signing algorithm is executed.
- Probabilistic signatures: On different runs of the signing algorithm different signatures are generated, even if the message remains the same.
- Probabilistic signatures offer better protection against some kinds of forgery.
- Deterministic signatures are of two types:
- Multiple-use signatures: Slow. Parameters are used multiple times.

Digital signatures: classification

- Deterministic signatures: For a given message the same signature is generated on every occasion the signing algorithm is executed.
- Probabilistic signatures: On different runs of the signing algorithm different signatures are generated, even if the message remains the same.
- Probabilistic signatures offer better protection against some kinds of forgery.
- Deterministic signatures are of two types:
- Multiple-use signatures: Slow. Parameters are used multiple times.
- One-time signatures: Fast. Parameters are used only once.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Entity authentication

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Entity authentication

- Alice proves her identity to Bob.

Entity authentication

- Alice proves her identity to Bob.
- Alice demonstrates to Bob her knowledge of a secret piece of information.

Entity authentication

- Alice proves her identity to Bob.
- Alice demonstrates to Bob her knowledge of a secret piece of information.
- Alice may or may not reveal the secret itself to Bob.

Entity authentication

- Alice proves her identity to Bob.
- Alice demonstrates to Bob her knowledge of a secret piece of information.
- Alice may or may not reveal the secret itself to Bob.
- Both symmetric and asymmetric techniques are used for entity authentication.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Encryption
Digital signatures
Entity authentication
Attacks on cryptosystems

Weak authentication: Passwords

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Weak authentication: Passwords

Set-up phase

Weak authentication: Passwords

Set-up phase

- Alice supplies a secret password P to Bob.

Weak authentication: Passwords

Set-up phase

- Alice supplies a secret password P to Bob.
- Bob transforms (typically encrypts) P to generate $Q=f(P)$.

Weak authentication: Passwords

Set-up phase

- Alice supplies a secret password P to Bob.
- Bob transforms (typically encrypts) P to generate $Q=f(P)$.
- Bob stores Q for future use.

Weak authentication: Passwords

Set-up phase

- Alice supplies a secret password P to Bob.
- Bob transforms (typically encrypts) P to generate $Q=f(P)$.
- Bob stores Q for future use.

Authentication phase

Weak authentication: Passwords

Set-up phase

- Alice supplies a secret password P to Bob.
- Bob transforms (typically encrypts) P to generate $Q=f(P)$.
- Bob stores Q for future use.

Authentication phase

- Alice supplies her password P^{\prime} to Bob.

Weak authentication: Passwords

Set-up phase

- Alice supplies a secret password P to Bob.
- Bob transforms (typically encrypts) P to generate $Q=f(P)$.
- Bob stores Q for future use.

Authentication phase

- Alice supplies her password P^{\prime} to Bob.
- Bob computes $Q^{\prime}=f\left(P^{\prime}\right)$.

Weak authentication: Passwords

Set-up phase

- Alice supplies a secret password P to Bob.
- Bob transforms (typically encrypts) P to generate $Q=f(P)$.
- Bob stores Q for future use.

Authentication phase

- Alice supplies her password P^{\prime} to Bob.
- Bob computes $Q^{\prime}=f\left(P^{\prime}\right)$.
- Bob compares Q^{\prime} with the stored value Q.

Weak authentication: Passwords

Set-up phase

- Alice supplies a secret password P to Bob.
- Bob transforms (typically encrypts) P to generate $Q=f(P)$.
- Bob stores Q for future use.

Authentication phase

- Alice supplies her password P^{\prime} to Bob.
- Bob computes $Q^{\prime}=f\left(P^{\prime}\right)$.
- Bob compares Q^{\prime} with the stored value Q.
- $Q^{\prime}=Q$ if and only if $P^{\prime}=P$.

Weak authentication: Passwords

Set-up phase

- Alice supplies a secret password P to Bob.
- Bob transforms (typically encrypts) P to generate $Q=f(P)$.
- Bob stores Q for future use.

Authentication phase

- Alice supplies her password P^{\prime} to Bob.
- Bob computes $Q^{\prime}=f\left(P^{\prime}\right)$.
- Bob compares Q^{\prime} with the stored value Q.
- $Q^{\prime}=Q$ if and only if $P^{\prime}=P$.
- If $Q^{\prime}=Q$, Bob accepts Alice's identity.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Passwords (contd)

Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Passwords (contd)

- It should be difficult to invert the initial transform $Q=f(P)$.

Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Passwords (contd)

- It should be difficult to invert the initial transform $Q=f(P)$.
- Knowledge of Q, even if readable by enemies, does not reveal P.

Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Passwords (contd)

- It should be difficult to invert the initial transform $Q=f(P)$.
- Knowledge of Q, even if readable by enemies, does not reveal P.

Drawbacks

Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Passwords (contd)

- It should be difficult to invert the initial transform $Q=f(P)$.
- Knowledge of Q, even if readable by enemies, does not reveal P.

Drawbacks

- Alice reveals P itself to Bob. Bob may misuse this information.

Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Passwords (contd)

- It should be difficult to invert the initial transform $Q=f(P)$.
- Knowledge of Q, even if readable by enemies, does not reveal P.

Drawbacks

- Alice reveals P itself to Bob. Bob may misuse this information.
- P resides in unencrypted form in the memory during the authentication phase. A third party having access to this memory obtains Alice's secret.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Challenge-response techniques

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Challenge-response techniques

- Alice does not reveal her secret directly to Bob.

Cryptographic primitives

Challenge-response techniques

- Alice does not reveal her secret directly to Bob.
- Bob generates a challenge C and sends C to Alice.

Cryptographic primitives

Challenge-response techniques

- Alice does not reveal her secret directly to Bob.
- Bob generates a challenge C and sends C to Alice.
- Alice responds to C by sending a response R back to Bob.

Cryptographic primitives

Challenge-response techniques

- Alice does not reveal her secret directly to Bob.
- Bob generates a challenge C and sends C to Alice.
- Alice responds to C by sending a response R back to Bob.
- Bob determines whether the response R is satisfactory.

Cryptographic primitives

Challenge-response techniques

- Alice does not reveal her secret directly to Bob.
- Bob generates a challenge C and sends C to Alice.
- Alice responds to C by sending a response R back to Bob.
- Bob determines whether the response R is satisfactory.
- Generating R from C requires the knowledge of the secret.

Cryptographic primitives

Challenge-response techniques

- Alice does not reveal her secret directly to Bob.
- Bob generates a challenge C and sends C to Alice.
- Alice responds to C by sending a response R back to Bob.
- Bob determines whether the response R is satisfactory.
- Generating R from C requires the knowledge of the secret.
- Absence of the knowledge of the secret fails to generate a satisfactory response with a good probability p.

Cryptographic primitives

Challenge-response techniques

- Alice does not reveal her secret directly to Bob.
- Bob generates a challenge C and sends C to Alice.
- Alice responds to C by sending a response R back to Bob.
- Bob determines whether the response R is satisfactory.
- Generating R from C requires the knowledge of the secret.
- Absence of the knowledge of the secret fails to generate a satisfactory response with a good probability p.
- The above protocol may be repeated more than once (depending on p).

Cryptographic primitives

Challenge-response techniques

- Alice does not reveal her secret directly to Bob.
- Bob generates a challenge C and sends C to Alice.
- Alice responds to C by sending a response R back to Bob.
- Bob determines whether the response R is satisfactory.
- Generating R from C requires the knowledge of the secret.
- Absence of the knowledge of the secret fails to generate a satisfactory response with a good probability p.
- The above protocol may be repeated more than once (depending on p).
- If Bob receives satisfactory response in every iteration, he accepts Alice's identity.

Challenge-response techniques

- Alice does not reveal her secret directly to Bob.
- Bob generates a challenge C and sends C to Alice.
- Alice responds to C by sending a response R back to Bob.
- Bob determines whether the response R is satisfactory.
- Generating R from C requires the knowledge of the secret.
- Absence of the knowledge of the secret fails to generate a satisfactory response with a good probability p.
- The above protocol may be repeated more than once (depending on p).
- If Bob receives satisfactory response in every iteration, he accepts Alice's identity.

Drawback

- C and R may reveal to Bob or an eavesdropper some knowledge about Alice's secret.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Zero-knowledge protocol

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Zero-knowledge protocol

- A special class of challenge-response techniques.

Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Zero-knowledge protocol

- A special class of challenge-response techniques.
- Absolutely no information is leaked to Bob or to any third party.

Cryptographic primitives

Zero-knowledge protocol

- A special class of challenge-response techniques.
- Absolutely no information is leaked to Bob or to any third party.

A real-life example

Door with secret key

Left exit Right exit
B

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Secret sharing

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Secret sharing

- A secret is distributed to n parties.

Cryptographic primitives

Secret sharing

- A secret is distributed to n parties.
- All of these n parties should cooperate to reconstruct the secret.

Cryptographic primitives

Secret sharing

- A secret is distributed to n parties.
- All of these n parties should cooperate to reconstruct the secret.
- Participation of only $\leqslant n-1$ parties should fail to reconstruct the secret.

Secret sharing

- A secret is distributed to n parties.
- All of these n parties should cooperate to reconstruct the secret.
- Participation of only $\leqslant n-1$ parties should fail to reconstruct the secret.

Generalization

Secret sharing

- A secret is distributed to n parties.
- All of these n parties should cooperate to reconstruct the secret.
- Participation of only $\leqslant n-1$ parties should fail to reconstruct the secret.

Generalization

- Any m (or more) parties can reconstruct the secret (for some $m \leqslant n$).

Secret sharing

- A secret is distributed to n parties.
- All of these n parties should cooperate to reconstruct the secret.
- Participation of only $\leqslant n-1$ parties should fail to reconstruct the secret.

Generalization

- Any m (or more) parties can reconstruct the secret (for some $m \leqslant n$).
- Participation of only $\leqslant m-1$ parties should fail to reconstruct the secret.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Cryptographic hash functions

Cryptographic hash functions

- Used to convert strings of any length to strings of a fixed length.

Cryptographic hash functions

- Used to convert strings of any length to strings of a fixed length.
- Used for the generation of (short) representatives of messages.

Cryptographic primitives

Cryptographic hash functions

- Used to convert strings of any length to strings of a fixed length.
- Used for the generation of (short) representatives of messages.
- Symmetric techniques are typically used for designing hash functions.

Cryptographic hash functions

- Used to convert strings of any length to strings of a fixed length.
- Used for the generation of (short) representatives of messages.
- Symmetric techniques are typically used for designing hash functions.

Modification detection code (MDC)

- An unkeyed hash function is used to guard against unauthorized/accidental message alterations. Signature schemes also use MDC's.

Cryptographic hash functions

- Used to convert strings of any length to strings of a fixed length.
- Used for the generation of (short) representatives of messages.
- Symmetric techniques are typically used for designing hash functions.

Modification detection code (MDC)

- An unkeyed hash function is used to guard against unauthorized/accidental message alterations. Signature schemes also use MDC's.

Message authentication code (MAC)

- A keyed hash function is used to authenticate the source of messages.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Encryption
Digital signatures
Entity authentication
Attacks on cryptosystems

Cryptographic hash functions: Properties

Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Cryptographic hash functions: Properties

- A collision for a hash function H is a pair of two distinct strings x, y with $H(x)=H(y)$. Collisions must exist for any hash function.

Cryptographic hash functions: Properties

- A collision for a hash function H is a pair of two distinct strings x, y with $H(x)=H(y)$. Collisions must exist for any hash function.
First pre-image resistance
- For most hash values y, it should be difficult to find a string x with $H(x)=y$.

Cryptographic hash functions: Properties

- A collision for a hash function H is a pair of two distinct strings x, y with $H(x)=H(y)$. Collisions must exist for any hash function.
First pre-image resistance
- For most hash values y, it should be difficult to find a string x with $H(x)=y$.

Second pre-image resistance

- Given a string x, it should be difficult to find a different string x^{\prime} with $H\left(x^{\prime}\right)=H(x)$.

Cryptographic hash functions: Properties

- A collision for a hash function H is a pair of two distinct strings x, y with $H(x)=H(y)$. Collisions must exist for any hash function.
First pre-image resistance
- For most hash values y, it should be difficult to find a string x with $H(x)=y$.
Second pre-image resistance
- Given a string x, it should be difficult to find a different string x^{\prime} with $H\left(x^{\prime}\right)=H(x)$.
Collision resistance
- It should be difficult to find two distinct strings x, x^{\prime} with $H(x)=H\left(x^{\prime}\right)$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Certification

Certification

- A public-key certificate insures that a public key actually belongs to an entity.

Certification

- A public-key certificate insures that a public key actually belongs to an entity.
- Certificates are issued by a trusted Certification Authority (CA).

Certification

- A public-key certificate insures that a public key actually belongs to an entity.
- Certificates are issued by a trusted Certification Authority (CA).
- A certificate consists of a public key and other additional information about the owner of the key.

Certification

- A public-key certificate insures that a public key actually belongs to an entity.
- Certificates are issued by a trusted Certification Authority (CA).
- A certificate consists of a public key and other additional information about the owner of the key.
- The authenticity of a certificate is achieved by the digital signature of the CA on the certificate.

Certification

- A public-key certificate insures that a public key actually belongs to an entity.
- Certificates are issued by a trusted Certification Authority (CA).
- A certificate consists of a public key and other additional information about the owner of the key.
- The authenticity of a certificate is achieved by the digital signature of the CA on the certificate.
- Compromised certificates are revoked and a certificate revocation list (CRL) is maintained by the CA.

Certification

- A public-key certificate insures that a public key actually belongs to an entity.
- Certificates are issued by a trusted Certification Authority (CA).
- A certificate consists of a public key and other additional information about the owner of the key.
- The authenticity of a certificate is achieved by the digital signature of the CA on the certificate.
- Compromised certificates are revoked and a certificate revocation list (CRL) is maintained by the CA.
- If a certificate is not in the CRL, and the signature of the CA on the certificate is verified, one gains the desired confidence of treating the public-key as authentic.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Models of attack

Models of attack

- Partial breaking of a cryptosystem

The attacker succeeds in decrypting some ciphertext messages, but without any guarantee that this capability would help him break new ciphertext messages in future.

Models of attack

- Partial breaking of a cryptosystem The attacker succeeds in decrypting some ciphertext messages, but without any guarantee that this capability would help him break new ciphertext messages in future.
- Complete breaking of a cryptosystem

The attacker possesses the capability of decrypting any ciphertext message. This may be attributed to a knowledge of the decryption key(s).

Models of attack

- Partial breaking of a cryptosystem

The attacker succeeds in decrypting some ciphertext messages, but without any guarantee that this capability would help him break new ciphertext messages in future.

- Complete breaking of a cryptosystem

The attacker possesses the capability of decrypting any ciphertext message. This may be attributed to a knowledge of the decryption key(s).

- Passive attack

The attacker only intercepts messages meant for others.

Models of attack

- Partial breaking of a cryptosystem

The attacker succeeds in decrypting some ciphertext messages, but without any guarantee that this capability would help him break new ciphertext messages in future.

- Complete breaking of a cryptosystem

The attacker possesses the capability of decrypting any ciphertext message. This may be attributed to a knowledge of the decryption key(s).

- Passive attack

The attacker only intercepts messages meant for others.

- Active attack

The attacker alters and/or deletes messages and even creates unauthorized messages.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Types of passive attack

Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Types of passive attack

- Ciphertext-only attack: The attacker has no control/knowledge of the ciphertexts and the corresponding plaintexts. This is the most difficult (but practical) attack.

Cryptographic primitives
Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Types of passive attack

- Ciphertext-only attack: The attacker has no control/knowledge of the ciphertexts and the corresponding plaintexts. This is the most difficult (but practical) attack.
- Known plaintext attack: The attacker knows some plaintext-ciphertext pairs. Easily mountable in public-key systems.

Types of passive attack

- Ciphertext-only attack: The attacker has no control/knowledge of the ciphertexts and the corresponding plaintexts. This is the most difficult (but practical) attack.
- Known plaintext attack: The attacker knows some plaintext-ciphertext pairs. Easily mountable in public-key systems.
- Chosen plaintext attack: A known plaintext attack where the plaintext messages are chosen by the attacker.

Types of passive attack

- Ciphertext-only attack: The attacker has no control/knowledge of the ciphertexts and the corresponding plaintexts. This is the most difficult (but practical) attack.
- Known plaintext attack: The attacker knows some plaintext-ciphertext pairs. Easily mountable in public-key systems.
- Chosen plaintext attack: A known plaintext attack where the plaintext messages are chosen by the attacker.
- Adaptive chosen plaintext attack: A chosen plaintext attack where the plaintext messages are chosen adaptively by the attacker.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Encryption
Digital signatures
Entity authentication
Attacks on cryptosystems

Types of passive attack (contd.)

Types of passive attack (contd.)

- Chosen ciphertext attack: A known plaintext attack where the ciphertext messages are chosen by the attacker. Mountable if the attacker gets hold of the victim's decryption device.

Types of passive attack (contd.)

- Chosen ciphertext attack: A known plaintext attack where the ciphertext messages are chosen by the attacker. Mountable if the attacker gets hold of the victim's decryption device.
- Adaptive chosen ciphertext attack: A chosen ciphertext attack where the ciphertext messages are chosen adaptively by the attacker.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Attacks on cryptosystems

Attacks on digital signatures

Attacks on digital signatures

- Total break: An attacker knows the signing key or has a function that is equivalent to the signature generation transformation.

Attacks on digital signatures

- Total break: An attacker knows the signing key or has a function that is equivalent to the signature generation transformation.
- Selective forgery: An attacker can generate signatures (without the participation of the legitimate signer) on a set of messages chosen by the attacker.

Attacks on digital signatures

- Total break: An attacker knows the signing key or has a function that is equivalent to the signature generation transformation.
- Selective forgery: An attacker can generate signatures (without the participation of the legitimate signer) on a set of messages chosen by the attacker.
- Existential forgery: The attacker can generate signatures on certain messages over which the attacker has no control.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Attacks on digital signatures (contd)

Attacks on digital signatures (contd)

- Key-only attack: The attacker knows only the verification (public) key of the signer. This is the most difficult attack to mount.

Attacks on digital signatures (contd)

- Key-only attack: The attacker knows only the verification (public) key of the signer. This is the most difficult attack to mount.
- Known message attack: The attacker knows some messages and the signatures of the signer on these messages.

Attacks on digital signatures (contd)

- Key-only attack: The attacker knows only the verification (public) key of the signer. This is the most difficult attack to mount.
- Known message attack: The attacker knows some messages and the signatures of the signer on these messages.
- Chosen message attack: This is similar to the known message attack except that the messages for which the signatures are known are chosen by the attacker.

Attacks on digital signatures (contd)

- Key-only attack: The attacker knows only the verification (public) key of the signer. This is the most difficult attack to mount.
- Known message attack: The attacker knows some messages and the signatures of the signer on these messages.
- Chosen message attack: This is similar to the known message attack except that the messages for which the signatures are known are chosen by the attacker.
- Adaptive chosen message attack: The messages to be signed are adaptively chosen by the attacker.

Part II: Symmetric cryptosystems

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Block ciphers

Block ciphers

- A block cipher f of block-size n and key-size r is a function

$$
f: \mathbb{Z}_{2}^{n} \times \mathbb{Z}_{2}^{r} \rightarrow \mathbb{Z}_{2}^{n}
$$

that maps (M, K) to $C=f(M, K)$.

Block ciphers

- A block cipher f of block-size n and key-size r is a function

$$
f: \mathbb{Z}_{2}^{n} \times \mathbb{Z}_{2}^{r} \rightarrow \mathbb{Z}_{2}^{n}
$$

that maps (M, K) to $C=f(M, K)$.

- For each key K the map

$$
f_{K}: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{n}
$$

taking a plaintext message M to the ciphertext message $C=f_{K}(M)=f(M, K)$ should be bijective (invertible).

Block ciphers

- A block cipher f of block-size n and key-size r is a function

$$
f: \mathbb{Z}_{2}^{n} \times \mathbb{Z}_{2}^{r} \rightarrow \mathbb{Z}_{2}^{n}
$$

that maps (M, K) to $C=f(M, K)$.

- For each key K the map

$$
f_{K}: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{n}
$$

taking a plaintext message M to the ciphertext message $C=f_{K}(M)=f(M, K)$ should be bijective (invertible).

- n and r should be large enough to preclude successful exhaustive search.

Block ciphers

- A block cipher f of block-size n and key-size r is a function

$$
f: \mathbb{Z}_{2}^{n} \times \mathbb{Z}_{2}^{r} \rightarrow \mathbb{Z}_{2}^{n}
$$

that maps (M, K) to $C=f(M, K)$.

- For each key K the map

$$
f_{K}: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{n}
$$

taking a plaintext message M to the ciphertext message $C=f_{K}(M)=f(M, K)$ should be bijective (invertible).

- n and r should be large enough to preclude successful exhaustive search.
- Each f_{K} should be a sufficiently random permutation.

Block ciphers: Examples

Name	n, r
DES (Data Encryption Standard)	64,56
FEAL (Fast Data Encipherment Algorithm)	64,64
SAFER (Secure And Fast Encryption Routine)	64,64
IDEA (International Data Encryption Algorithm)	64,128
Blowfish	$64, \leqslant 448$
Rijndael	$128 / 192 / 256$,
	$128 / 192 / 256$

Block ciphers: Examples

Name	n, r
DES (Data Encryption Standard)	64,56
FEAL (Fast Data Encipherment Algorithm)	64,64
SAFER (Secure And Fast Encryption Routine)	64,64
IDEA (International Data Encryption Algorithm)	64,128
Blowfish	$64, \leqslant 448$
Rijndael	$128 / 192 / 256$,
	$128 / 192 / 256$

Old standard: DES

Block ciphers: Examples

Name	n, r
DES (Data Encryption Standard)	64,56
FEAL (Fast Data Encipherment Algorithm)	64,64
SAFER (Secure And Fast Encryption Routine)	64,64
IDEA (International Data Encryption Algorithm)	64,128
Blowfish	$64, \leqslant 448$
Rijndael	$128 / 192 / 256$,
	$128 / 192 / 256$

Old standard: DES

New standard: AES (adaptation of the Rijndael cipher)

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

A case study: AES (Advanced Encryption Standard)

A case study: AES (Advanced Encryption Standard)

- AES is an adaptation of the Rijndael cipher designed by J. Daemen and V. Rijmen.

A case study: AES (Advanced Encryption Standard)

- AES is an adaptation of the Rijndael cipher designed by J. Daemen and V. Rijmen.
- Number of rounds N_{r} for AES is $10 / 12 / 14$ for key-sizes 128/192/256.

A case study: AES (Advanced Encryption Standard)

- AES is an adaptation of the Rijndael cipher designed by J. Daemen and V. Rijmen.
- Number of rounds N_{r} for AES is $10 / 12 / 14$ for key-sizes 128/192/256.
- AES key schedule: From K, generate round keys $K_{0}, K_{1}, \ldots, K_{4 N_{r}+3}$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

A case study: AES (contd.)

A case study: AES (contd.)

- State: AES represents a 128-bit message block as a 4×4 array of octets:

$$
\mu_{0} \mu_{1} \ldots \mu_{15} \equiv \begin{array}{|c|c|c|c|}
\hline \mu_{0} & \mu_{4} & \mu_{8} & \mu_{12} \\
\hline \mu_{1} & \mu_{5} & \mu_{9} & \mu_{13} \\
\hline \mu_{2} & \mu_{6} & \mu_{10} & \mu_{14} \\
\hline \mu_{3} & \mu_{7} & \mu_{11} & \mu_{15} \\
\hline
\end{array}
$$

A case study: AES (contd.)

- State: AES represents a 128-bit message block as a 4×4 array of octets:

$\mu_{0} \mu_{1} \ldots \mu_{15} \equiv$| μ_{0} | μ_{4} | μ_{8} | μ_{12} |
| :---: | :---: | :---: | :---: |
| μ_{1} | μ_{5} | μ_{9} | μ_{13} |
| μ_{2} | μ_{6} | μ_{10} | μ_{14} |
| μ_{3} | μ_{7} | μ_{11} | μ_{15} |

- Each octet in the state is identified as an element of $\mathbb{F}_{2^{8}}=\mathbb{F}_{2}[x] /\left\langle x^{8}+x^{4}+x^{3}+x+1\right\rangle$.

A case study: AES (contd.)

- State: AES represents a 128-bit message block as a 4×4 array of octets:

$\mu_{0} \mu_{1} \ldots \mu_{15} \equiv$| μ_{0} | μ_{4} | μ_{8} | μ_{12} |
| :---: | :---: | :---: | :---: |
| μ_{1} | μ_{5} | μ_{9} | μ_{13} |
| μ_{2} | μ_{6} | μ_{10} | μ_{14} |
| μ_{3} | μ_{7} | μ_{11} | μ_{15} |

- Each octet in the state is identified as an element of $\mathbb{F}_{2^{8}}=\mathbb{F}_{2}[x] /\left\langle x^{8}+x^{4}+x^{3}+x+1\right\rangle$.
- Each column in the state is identified as an element of $\mathbb{F}_{2^{8}}[y] /\left\langle y^{4}+1\right\rangle$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Block ciphers
Stream ciphers
Hash functions

AES encryption

AES encryption

- Generate key schedule $K_{0}, K_{1}, \ldots, K_{4 N_{r}+3}$ from the key K.

AES encryption

- Generate key schedule $K_{0}, K_{1}, \ldots, K_{4 N_{r}+3}$ from the key K.
- Convert the plaintext block M to a state S.

AES encryption

- Generate key schedule $K_{0}, K_{1}, \ldots, K_{4 N_{r}+3}$ from the key K.
- Convert the plaintext block M to a state S.
- $S=\operatorname{AddKey}\left(S, K_{0}, K_{1}, K_{2}, K_{3}\right)$.
[bitwise XOR]

AES encryption

- Generate key schedule $K_{0}, K_{1}, \ldots, K_{4 N_{r}+3}$ from the key K.
- Convert the plaintext block M to a state S.
- $S=\operatorname{AddKey}\left(S, K_{0}, K_{1}, K_{2}, K_{3}\right)$.
[bitwise XOR]
- for $i=1,2, \ldots, N_{r}$ do the following:
$S=\operatorname{SubState}(S)$.
[non-linear, involves inverses in $\mathbb{F}_{2^{8}}$] $S=\operatorname{ShiftRows}(S) . \quad$ [cyclic shift of octets in each row] If $i \neq N_{r}, S=\operatorname{MixCols}(S)$. [operation in $\mathbb{F}_{2^{8}}[y] /\left\langle y^{4}+1\right\rangle$] $S=\operatorname{AddKey}\left(S, K_{4 i}, K_{4 i+1}, K_{4 i+2}, K_{4 i+3}\right) . \quad[b i t w i s e ~ X O R] ~$

AES encryption

- Generate key schedule $K_{0}, K_{1}, \ldots, K_{4 N_{r}+3}$ from the key K.
- Convert the plaintext block M to a state S.
- $S=\operatorname{AddKey}\left(S, K_{0}, K_{1}, K_{2}, K_{3}\right)$.
- for $i=1,2, \ldots, N_{r}$ do the following: $S=\operatorname{SubState}(S) . \quad$ [non-linear, involves inverses in $\mathbb{F}_{2^{8}}$] $S=\operatorname{ShiftRows}(S) . \quad$ [cyclic shift of octets in each row] If $i \neq N_{r}, S=\operatorname{MixCols}(S)$. [operation in $\mathbb{F}_{2^{8}}[y] /\left\langle y^{4}+1\right\rangle$] $S=\operatorname{AddKey}\left(S, K_{4 i}, K_{4 i+1}, K_{4 i+2}, K_{4 i+3}\right) . \quad[b i t w i s e ~ X O R] ~$
- Convert the state S to the ciphertext block C.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Block ciphers
Stream ciphers
Hash functions

AES decryption

AES decryption

- Generate key schedule $K_{0}, K_{1}, \ldots, K_{4 N_{r}+3}$ from the key K.

AES decryption

- Generate key schedule $K_{0}, K_{1}, \ldots, K_{4 N_{r}+3}$ from the key K.
- Convert the ciphertext block C to a state S.

AES decryption

- Generate key schedule $K_{0}, K_{1}, \ldots, K_{4 N_{r}+3}$ from the key K.
- Convert the ciphertext block C to a state S.
- $S=\operatorname{AddKey}\left(S, K_{4 N_{r}}, K_{4 N_{r}+1}, K_{4 N_{r}+2}, K_{4 N_{r}+3}\right)$.

AES decryption

- Generate key schedule $K_{0}, K_{1}, \ldots, K_{4 N_{r}+3}$ from the key K.
- Convert the ciphertext block C to a state S.
- $S=\operatorname{AddKey}\left(S, K_{4 N_{r}}, K_{4 N_{r}+1}, K_{4 N_{r}+2}, K_{4 N_{r}+3}\right)$.
- for $i=N_{r}-1, N_{r}-2, \ldots, 1,0$ do the following: $S=$ ShiftRows $^{-1}(S)$.
$S=$ SubState $^{-1}(S)$.
$S=\operatorname{AddKey}\left(S, K_{4 i}, K_{4 i+1}, K_{4 i+2}, K_{4 i+3}\right)$. If $i \neq 0, S=\operatorname{MixCols}^{-1}(S)$.

AES decryption

- Generate key schedule $K_{0}, K_{1}, \ldots, K_{4 N_{r}+3}$ from the key K.
- Convert the ciphertext block C to a state S.
- $S=\operatorname{AddKey}\left(S, K_{4 N_{r}}, K_{4 N_{r}+1}, K_{4 N_{r}+2}, K_{4 N_{r}+3}\right)$.
- for $i=N_{r}-1, N_{r}-2, \ldots, 1,0$ do the following: $S=\operatorname{ShiftRows}^{-1}(S)$. $S=$ SubState $^{-1}(S)$.
$S=\operatorname{AddKey}\left(S, K_{4 i}, K_{4 i+1}, K_{4 i+2}, K_{4 i+3}\right)$. If $i \neq 0, S=\operatorname{MixCols}^{-1}(S)$.
- Convert the state S to the plaintext block M.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Multiple encryption

(a) Double encryption

(b) Triple encryption

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modes of operation

Modes of operation

- Break the message $M=M_{1} M_{2} \ldots M_{1}$ into blocks each of bit-length $n^{\prime} \leqslant n$.

Modes of operation

- Break the message $M=M_{1} M_{2} \ldots M_{1}$ into blocks each of bit-length $n^{\prime} \leqslant n$.
- ECB (Electronic Code-Book) mode: Here $n^{\prime}=n$.

$$
C_{i}=f_{K}\left(M_{i}\right)
$$

Modes of operation

- Break the message $M=M_{1} M_{2} \ldots M_{1}$ into blocks each of bit-length $n^{\prime} \leqslant n$.
- ECB (Electronic Code-Book) mode: Here $n^{\prime}=n$.

$$
C_{i}=f_{K}\left(M_{i}\right)
$$

- CBC (Cipher-Block Chaining) mode: Here $n^{\prime}=n$.

$$
C_{i}=f_{K}\left(M_{i} \oplus C_{i-1}\right)
$$

Modes of operation

- Break the message $M=M_{1} M_{2} \ldots M_{l}$ into blocks each of bit-length $n^{\prime} \leqslant n$.
- ECB (Electronic Code-Book) mode: Here $n^{\prime}=n$.

$$
C_{i}=f_{K}\left(M_{i}\right) .
$$

- CBC (Cipher-Block Chaining) mode: Here $n^{\prime}=n$.

$$
C_{i}=f_{K}\left(M_{i} \oplus C_{i-1}\right) .
$$

- CFB (Cipher FeedBack) Mode: Here $n^{\prime} \leqslant n$. Set $k_{0}=$ IV.

$$
\begin{aligned}
& C_{i}=M_{i} \oplus \operatorname{msb}_{n^{\prime}}\left(f_{K}\left(k_{i-1}\right)\right) . \\
& k_{i}=\operatorname{lsb}_{n-n^{\prime}}\left(k_{i-1}\right) \| C_{i} .
\end{aligned}
$$

[Mask key and plaintext]
[Generate next key]

Modes of operation

- Break the message $M=M_{1} M_{2} \ldots M_{1}$ into blocks each of bit-length $n^{\prime} \leqslant n$.
- ECB (Electronic Code-Book) mode: Here $n^{\prime}=n$.

$$
C_{i}=f_{K}\left(M_{i}\right)
$$

- CBC (Cipher-Block Chaining) mode: Here $n^{\prime}=n$.

$$
C_{i}=f_{K}\left(M_{i} \oplus C_{i-1}\right)
$$

- CFB (Cipher FeedBack) Mode: Here $n^{\prime} \leqslant n$. Set $k_{0}=$ IV.

$$
\begin{array}{lr}
C_{i}=M_{i} \oplus \operatorname{msb}_{n^{\prime}}\left(f_{K}\left(k_{i-1}\right)\right) . & \text { [Mask key and plaintext] } \\
k_{i}=\operatorname{lsb}_{n-n^{\prime}}\left(k_{i-1}\right) \| C_{i} . & \text { [Generate next key] }
\end{array}
$$

- OFB (Output FeedBack) Mode: Here $n^{\prime} \leqslant n$. Set $k_{0}=$ IV.

$$
\begin{aligned}
& k_{i}=f_{K}\left(k_{i-1}\right) \\
& C_{i}=M_{i} \oplus \operatorname{msb}_{n^{\prime}}\left(k_{i}\right)
\end{aligned}
$$

[Generate next key]
[Mask plaintext block]

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Attacks on block ciphers

Attacks on block ciphers

- Exhaustive key search: If the key space is small, all possibilities for an unknown key can be matched against known plaintext-ciphertext pairs. Many DES challenges are cracked by exhaustive key search. DES has a small key-size (56 bits). Only two plaintext-ciphertext pairs usually suffice to determine a key uniquely.

Attacks on block ciphers

- Exhaustive key search: If the key space is small, all possibilities for an unknown key can be matched against known plaintext-ciphertext pairs. Many DES challenges are cracked by exhaustive key search. DES has a small key-size (56 bits). Only two plaintext-ciphertext pairs usually suffice to determine a key uniquely.
- Linear and differential cryptanalysis: By far the most sophisticated attacks on block ciphers. Impractical if sufficiently many rounds are used. AES is robust against these attacks.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Block ciphers
Stream ciphers
Hash functions

Attacks on block ciphers (contd.)

Attacks on block ciphers (contd.)

- Specific attacks on AES:

Square attack
Collision attack
Algebraic attacks (like XSL)

Attacks on block ciphers (contd.)

- Specific attacks on AES:

Square attack
Collision attack
Algebraic attacks (like XSL)

- Meet-in-the-middle attack: Applies to multiple encryption schemes. With m stages we get the equivalent security of $\lceil m / 2\rceil$ keys only.

Cryptographic primitives

Block ciphers
Stream ciphers
Hash functions

Stream ciphers

Stream ciphers

- Stream ciphers encrypt bit-by-bit.

Stream ciphers

- Stream ciphers encrypt bit-by-bit.
- Plaintext stream: $M=m_{1} m_{2} \ldots m_{l}$.

Key stream: $K=k_{1} k_{2} \ldots k_{l}$. Ciphertext stream: $C=c_{1} c_{2} \ldots c_{l}$.

Stream ciphers

- Stream ciphers encrypt bit-by-bit.
- Plaintext stream: $M=m_{1} m_{2} \ldots m_{l}$.

Key stream: $K=k_{1} k_{2} \ldots k_{l}$.
Ciphertext stream: $C=c_{1} c_{2} \ldots c_{l}$.

- Encryption: $c_{i}=m_{i} \oplus k_{i}$.

Stream ciphers

- Stream ciphers encrypt bit-by-bit.
- Plaintext stream: $M=m_{1} m_{2} \ldots m_{l}$.

Key stream: $K=k_{1} k_{2} \ldots k_{l}$.
Ciphertext stream: $C=c_{1} c_{2} \ldots c_{l}$.

- Encryption: $c_{i}=m_{i} \oplus k_{i}$.
- Decryption: $m_{i}=c_{i} \oplus k_{i}$.

Stream ciphers

- Stream ciphers encrypt bit-by-bit.
- Plaintext stream: $M=m_{1} m_{2} \ldots m_{l}$.

Key stream: $K=k_{1} k_{2} \ldots k_{l}$.
Ciphertext stream: $C=c_{1} c_{2} \ldots c_{l}$.

- Encryption: $c_{i}=m_{i} \oplus k_{i}$.
- Decryption: $m_{i}=c_{i} \oplus k_{i}$.
- Source of security: unpredictability in the key-stream.

Stream ciphers

- Stream ciphers encrypt bit-by-bit.
- Plaintext stream: $M=m_{1} m_{2} \ldots m_{l}$.

Key stream: $K=k_{1} k_{2} \ldots k_{l}$.
Ciphertext stream: $C=c_{1} c_{2} \ldots c_{l}$.

- Encryption: $c_{i}=m_{i} \oplus k_{i}$.
- Decryption: $m_{i}=c_{i} \oplus k_{i}$.
- Source of security: unpredictability in the key-stream.
- Vernam's one-time pad: For a truly random key stream,

$$
\operatorname{Pr}\left(c_{i}=0\right)=\operatorname{Pr}\left(c_{i}=1\right)=\frac{1}{2}
$$

for each i, irrespective of the probabilities of the values assumed by m_{i}. This leads to unconditional security, that is, the knowledge of any number of plaintext-ciphertext bit pairs, does not help in decrypting a new ciphertext bit.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Block ciphers
Stream ciphers
Hash functions

Stream ciphers: drawbacks

Stream ciphers: drawbacks

- Key stream should be as long as the message stream. Management of long key streams is difficult.

Cryptographic primitives

Stream ciphers: drawbacks

- Key stream should be as long as the message stream. Management of long key streams is difficult.
- It is difficult to generate truly random (and reproducible) key streams.

Stream ciphers: drawbacks

- Key stream should be as long as the message stream. Management of long key streams is difficult.
- It is difficult to generate truly random (and reproducible) key streams.
- Pseudorandom bit streams provide practical solution, but do not guarantee unconditional security.

Stream ciphers: drawbacks

- Key stream should be as long as the message stream. Management of long key streams is difficult.
- It is difficult to generate truly random (and reproducible) key streams.
- Pseudorandom bit streams provide practical solution, but do not guarantee unconditional security.
- Pseudorandom bit generators are vulnerable to compromise of seeds.

Stream ciphers: drawbacks

- Key stream should be as long as the message stream. Management of long key streams is difficult.
- It is difficult to generate truly random (and reproducible) key streams.
- Pseudorandom bit streams provide practical solution, but do not guarantee unconditional security.
- Pseudorandom bit generators are vulnerable to compromise of seeds.
- Repeated use of the same key stream degrades security.

Linear Feedback Shift Registers (LFSR)

LFSR: Example

Time	D_{3}	D_{2}	D_{1}	D_{0}
0	1	1	0	1
1	1	1	1	0

Time	D_{3}	D_{2}	D_{1}	D_{0}
0	1	1	0	1
1	1	1	1	0
2	1	1	1	1

Time	D_{3}	D_{2}	D_{1}	D_{0}
0	1	1	0	1
1	1	1	1	0
2	1	1	1	1
3	0	1	1	1

LFSR: Example

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

LFSR: Example

	Time	D_{3}	D_{2}	D_{1}	D_{0}
	0	1	1	0	1
	1	1	1	1	0
	2	1	1	1	1
	3	0	1	1	1
	4	0	0	1	1
$\rightarrow D_{3} \mathrm{D}_{3} D_{2} \mathrm{D}_{1} \mathrm{D}_{0} \longrightarrow$ output	5	0	0	0	1
	6	1	0	0	0
1	7	0	1	0	0
	8	0	0	1	0
		1	0	0	1

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

LFSR: Example

	Time	D_{3}	D_{2}	D_{1}	D_{0}
	0	1	1	0	1
	1	1	1	1	0
	2	1	1	1	1
	3	0	1	1	1
	4	0	0	1	1
\rightarrow D_{3} D_{2} D_{1} $D_{0}$$\longrightarrow$ output	5	0	0	0	1
	6	1	0	0	0
1	7	0	1	0	0
	8	0	0	1	0
	9	1	0	0	1
	10	1	1	0	0

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

LFSR: Example

	Time	D_{3}	D_{2}	D_{1}	D_{0}
	0	1	1	0	1
	1	1	1	1	0
	2	1	1	1	1
	3	0	1	1	1
	4	0	0	1	1
$\rightarrow \mathrm{D}_{3}$	5	0	0	0	1
	6	1	0	0	0
1	7	0	1	0	0
+	8	0	0	1	0
	9	1	0	0	1
	10	1		0	0
	11	0	1	1	0

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

LFSR: Example

	Time	D_{3}	D_{2}	D_{1}	D_{0}
	0	1	1	0	1
	1	1	1	1	0
	2	1	1	1	1
	3	0	1	1	1
	4	0	0	1	1
$\rightarrow \mathrm{D}_{3}$	5	0	0	0	1
	6	1	0	0	0
	7	0	1	0	0
+	8	0	0	1	0
	9	1	0	0	1
	10	1	1	0	0
	11	0	1		0
	12	1	0	1	1

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

LFSR: Example

	Time	D_{3}	D_{2}	D_{1}	D_{0}
	0	1	1	0	1
	1	1	1	1	0
	2	1	1	1	1
	3	0	1	1	1
	4	0	0	1	1
$\rightarrow \mathrm{D}_{3}$	5	0	0	0	1
	6	1	0	0	0
1	7	0	1	0	0
+	8	0	0	1	0
	9	1	0	0	1
	10	1	1	0	0
	11	0	1	1	0
	12	1	0	1	1
	13	0	1	0	1

LFSR: Example

	Time	D_{3}	D_{2}	D_{1}	D_{0}
	0	1	1	0	1
	1	1	1	1	0
	2	1	1	1	1
	3	0	1	1	1
	4	0	0	1	1
$\rightarrow \mathrm{D}_{3}$	5	0	0	0	1
	6	1	0	0	0
1	7	0	1	0	0
+	8	0	0	1	0
	9	1	0	0	1
	10	1	1	0	0
	11	0	1	1	0
	12	1	0	1	1
	13	0	1	0	1
	14	1	0	1	0

LFSR: Example

| | | Time D_{3} | D_{2} | D_{1} | D_{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

LFSR: State transition

Cryptographic primitives

LFSR: State transition

- Control bits: $a_{0}, a_{1}, \ldots, a_{d-1}$.

LFSR: State transition

- Control bits: $a_{0}, a_{1}, \ldots, a_{d-1}$.
- State: $\mathbf{s}=\left(s_{0}, s_{1}, \ldots, s_{d-1}\right)$.

LFSR: State transition

- Control bits: $a_{0}, a_{1}, \ldots, a_{d-1}$.
- State: $\mathbf{s}=\left(s_{0}, s_{1}, \ldots, s_{d-1}\right)$.
- Each clock pulse changes the state as follows:

$$
\begin{array}{rlrl}
t_{0} & = & s_{1} \\
t_{1} & = & s_{2} \\
\vdots & & \\
t_{d-2} & = & s_{d-1} \\
t_{d-1} & =a_{0} s_{0}+a_{1} s_{1}+a_{2} s_{2}+\cdots+a_{d-1} s_{d-1}(\bmod 2) .
\end{array}
$$

LFSR: State transition (contd.)

- In the matrix notation $\mathbf{t}=\Delta_{L} \mathbf{s}(\bmod 2)$, where the transition matrix is

$$
\Delta_{L}=\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
a_{0} & a_{1} & a_{2} & \cdots & a_{d-2} & a_{d-1}
\end{array}\right) .
$$

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Block ciphers
Stream ciphers
Hash functions

LFSR (contd)

LFSR (contd)

- The output bit-stream behaves like a pseudorandom sequence.

LFSR (contd)

- The output bit-stream behaves like a pseudorandom sequence.
- The output stream must be periodic. The period should be large.

LFSR (contd)

- The output bit-stream behaves like a pseudorandom sequence.
- The output stream must be periodic. The period should be large.
- Maximum period of a non-zero bit-stream $=2^{d}-1$.

LFSR (contd)

- The output bit-stream behaves like a pseudorandom sequence.
- The output stream must be periodic. The period should be large.
- Maximum period of a non-zero bit-stream $=2^{d}-1$.
- Maximum-length LFSR has the maximum period.

LFSR (contd)

- The output bit-stream behaves like a pseudorandom sequence.
- The output stream must be periodic. The period should be large.
- Maximum period of a non-zero bit-stream $=2^{d}-1$.
- Maximum-length LFSR has the maximum period.
- Connection polynomial

$$
C_{L}(x)=1+a_{d-1} x+a_{d-2} x^{2}+\cdots+a_{1} x^{d-1}+a_{0} x^{d} \in \mathbb{F}_{2}[X]
$$

LFSR (contd)

- The output bit-stream behaves like a pseudorandom sequence.
- The output stream must be periodic. The period should be large.
- Maximum period of a non-zero bit-stream $=2^{d}-1$.
- Maximum-length LFSR has the maximum period.
- Connection polynomial

$$
C_{L}(x)=1+a_{d-1} x+a_{d-2} x^{2}+\cdots+a_{1} x^{d-1}+a_{0} x^{d} \in \mathbb{F}_{2}[X]
$$

- L is a maximum-length LFSR if and only if $C_{L}(x)$ is a primitive polynomial of $\mathbb{F}_{2}[x]$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Block ciphers
Stream ciphers
Hash functions

An attack on LFSR

An attack on LFSR

- The linear relation of the feedback bit as a function of the current state in LFSRs invites attacks.

An attack on LFSR

- The linear relation of the feedback bit as a function of the current state in LFSRs invites attacks.
- Berlekamp-Massey attack

Suppose that the bits m_{i} and c_{i} for $2 d$ consecutive values of i (say, $1,2, \ldots, 2 d$) are known to an attacker. Then $k_{i}=m_{i} \oplus c_{i}$ are also known for these values of i. Define the states $S_{i}=\left(k_{i}, k_{i+1}, \ldots, k_{i+d-1}\right)$ of the LFSR. Then,

$$
S_{i+1}=\Delta_{L} S_{i}(\bmod 2)
$$

for $i=1,2, \ldots, d$. Treat each S_{i} as a column vector. Then,

$$
\left(\begin{array}{llll}
S_{2} & S_{3} & \cdots & S_{d+1}
\end{array}\right)=\Delta_{L}\left(\begin{array}{llll}
S_{1} & S_{2} & \cdots & S_{d}
\end{array}\right)(\bmod 2)
$$

This reveals Δ_{L}, that is, the secret $a_{0}, a_{1}, \ldots, a_{d-1}$.

An attack on LFSR

- The linear relation of the feedback bit as a function of the current state in LFSRs invites attacks.
- Berlekamp-Massey attack

Suppose that the bits m_{i} and c_{i} for $2 d$ consecutive values of i (say, $1,2, \ldots, 2 d$) are known to an attacker. Then $k_{i}=m_{i} \oplus c_{i}$ are also known for these values of i. Define the states $S_{i}=\left(k_{i}, k_{i+1}, \ldots, k_{i+d-1}\right)$ of the LFSR. Then,

$$
S_{i+1}=\Delta_{L} S_{i}(\bmod 2)
$$

for $i=1,2, \ldots, d$. Treat each S_{i} as a column vector. Then,

$$
\left(\begin{array}{llll}
S_{2} & S_{3} & \cdots & S_{d+1}
\end{array}\right)=\Delta_{L}\left(\begin{array}{llll}
S_{1} & S_{2} & \cdots & S_{d}
\end{array}\right)(\bmod 2)
$$

This reveals Δ_{L}, that is, the secret $a_{0}, a_{1}, \ldots, a_{d-1}$.

- Remedy: Introduce non-linearity to the LFSR output.

Nonlinear combination generator

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

The Geffe generator

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Nonlinear filter generator

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Block ciphers
Stream ciphers
Hash functions

Hash functions

Hash functions

- Collision resistance implies second pre-image resistance.

Hash functions

- Collision resistance implies second pre-image resistance.
- Second pre-image resistance does not imply collision resistance: Let S be a finite set of size $\geqslant 2$ and H a cryptographic hash function. Then

$$
H^{\prime}(x)= \begin{cases}0^{n+1} & \text { if } x \in S \\ 1 \| H(x) & \text { otherwise }\end{cases}
$$

is second pre-image resistant but not collision resistant.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Block ciphers
Stream ciphers
Hash functions

Hash functions (contd.)

Hash functions (contd.)

- Collision resistance does not imply first pre-image resistance: Let H be an n-bit cryptographic hash function. Then

$$
H^{\prime \prime}(x)= \begin{cases}0 \| x & \text { if }|x|=n \\ 1 \| H(x) & \text { otherwise }\end{cases}
$$

is collision resistant (so second pre-image resistant), but not first pre-image resistant.

Cryptographic primitives

Hash functions (contd.)

- Collision resistance does not imply first pre-image resistance: Let H be an n-bit cryptographic hash function. Then

$$
H^{\prime \prime}(x)= \begin{cases}0 \| x & \text { if }|x|=n \\ 1 \| H(x) & \text { otherwise }\end{cases}
$$

is collision resistant (so second pre-image resistant), but not first pre-image resistant.

- First pre-image resistance does not imply second pre-image resistance: Let m be a product of two unknown big primes. Define $H^{\prime \prime \prime}(x)=(1 \| x)^{2}(\bmod m) . H^{\prime \prime \prime}$ is first pre-image resistant, but not second pre-image resistant.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Block ciphers
Stream ciphers
Hash functions

Hash functions: Construction

Hash functions: Construction

- Compression function: A function $F: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}^{n}$, where $m=n+r$.

Hash functions: Construction

- Compression function: A function $F: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}^{n}$, where $m=n+r$.
- Merkle-Damgård's meta method

Hash functions: Construction

- Compression function: A function $F: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}^{n}$, where $m=n+r$.
- Merkle-Damgård's meta method
- Break the input $x=x_{1} x_{2} \ldots x_{l}$ to blocks each of bit-length r.

Hash functions: Construction

- Compression function: A function $F: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}^{n}$, where $m=n+r$.
- Merkle-Damgård's meta method
- Break the input $x=x_{1} x_{2} \ldots x_{l}$ to blocks each of bit-length r.
- Initialize $h_{0}=0^{r}$.

Hash functions: Construction

- Compression function: A function $F: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}^{n}$, where $m=n+r$.
- Merkle-Damgård's meta method
- Break the input $x=x_{1} x_{2} \ldots x_{l}$ to blocks each of bit-length r.
- Initialize $h_{0}=0^{r}$.
- For $i=1,2, \ldots$, I use compression $h_{i}=F\left(h_{i-1} \| x_{i}\right)$.

Hash functions: Construction

- Compression function: A function $F: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}^{n}$, where $m=n+r$.
- Merkle-Damgård's meta method
- Break the input $x=x_{1} x_{2} \ldots x_{l}$ to blocks each of bit-length r.
- Initialize $h_{0}=0^{r}$.
- For $i=1,2, \ldots$, I use compression $h_{i}=F\left(h_{i-1} \| x_{i}\right)$.
- Output $H(x)=h_{l}$ as the hash value.

Hash functions: Construction

- Compression function: A function $F: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}^{n}$, where $m=n+r$.
- Merkle-Damgård's meta method
- Break the input $x=x_{1} x_{2} \ldots x_{l}$ to blocks each of bit-length r.
- Initialize $h_{0}=0^{r}$.
- For $i=1,2, \ldots$, I use compression $h_{i}=F\left(h_{i-1} \| x_{i}\right)$.
- Output $H(x)=h_{l}$ as the hash value.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Hash functions: Construction (contd)

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Hash functions: Construction (contd)

- Properties

Hash functions: Construction (contd)

- Properties
- If F is first pre-image resistant, then H is also first pre-image resistant.

Cryptographic primitives

Hash functions: Construction (contd)

- Properties
- If F is first pre-image resistant, then H is also first pre-image resistant.
- If F is collision resistant, then H is also collision resistant.

Hash functions: Construction (contd)

- Properties
- If F is first pre-image resistant, then H is also first pre-image resistant.
- If F is collision resistant, then H is also collision resistant.
- A concrete realization

Let f is a block cipher of block-size n and key-size r. Take:

$$
F(M \| K)=f_{K}(M)
$$

Hash functions: Construction (contd)

- Properties
- If F is first pre-image resistant, then H is also first pre-image resistant.
- If F is collision resistant, then H is also collision resistant.
- A concrete realization

Let f is a block cipher of block-size n and key-size r. Take:

$$
F(M \| K)=f_{K}(M)
$$

- Keyed hash function
$\operatorname{HMAC}(M)=H(K\|P\| H(K\|Q\| M)$), where H is an unkeyed hash function, K is a key and P, Q are short padding strings.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Custom-designed hash functions

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Custom-designed hash functions

- The SHA (Secure Hash Algorithm) family: SHA-1 (160-bit), SHA-256 (256-bit), SHA-384 (384-bit), SHA-512 (512-bit).

Custom-designed hash functions

- The SHA (Secure Hash Algorithm) family: SHA-1 (160-bit), SHA-256 (256-bit), SHA-384 (384-bit), SHA-512 (512-bit).
- The MD family:

MD2 (128-bit), MD5 (128-bit).

Custom-designed hash functions

- The SHA (Secure Hash Algorithm) family: SHA-1 (160-bit), SHA-256 (256-bit), SHA-384 (384-bit), SHA-512 (512-bit).
- The MD family: MD2 (128-bit), MD5 (128-bit).
- The RIPEMD family:

RIPEMD-128 (128-bit), RIPEMD-160 (160-bit).

Cryptographic primitives

Attacks on hash functions

Attacks on hash functions

- The birthday attack is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n / 2}$ hash values in order to detect (with high probability) a collision for the hash function.

Attacks on hash functions

- The birthday attack is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n / 2}$ hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires $n \geqslant 128$ ($n \geqslant 160$ is preferable).

Attacks on hash functions

- The birthday attack is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n / 2}$ hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires $n \geqslant 128$ ($n \geqslant 160$ is preferable).
- Algebraic attacks may make hash functions vulnerable.

Attacks on hash functions

- The birthday attack is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n / 2}$ hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires $n \geqslant 128$ ($n \geqslant 160$ is preferable).
- Algebraic attacks may make hash functions vulnerable.
- Some other attacks:

Attacks on hash functions

- The birthday attack is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n / 2}$ hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires $n \geqslant 128$ ($n \geqslant 160$ is preferable).
- Algebraic attacks may make hash functions vulnerable.
- Some other attacks:
- Pseudo-collision attacks

Attacks on hash functions

- The birthday attack is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n / 2}$ hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires $n \geqslant 128$ ($n \geqslant 160$ is preferable).
- Algebraic attacks may make hash functions vulnerable.
- Some other attacks:
- Pseudo-collision attacks
- Chaining attacks

Attacks on hash functions

- The birthday attack is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n / 2}$ hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires $n \geqslant 128$ ($n \geqslant 160$ is preferable).
- Algebraic attacks may make hash functions vulnerable.
- Some other attacks:
- Pseudo-collision attacks
- Chaining attacks
- Attacks on the underlying cipher

Attacks on hash functions

- The birthday attack is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n / 2}$ hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires $n \geqslant 128$ ($n \geqslant 160$ is preferable).
- Algebraic attacks may make hash functions vulnerable.
- Some other attacks:
- Pseudo-collision attacks
- Chaining attacks
- Attacks on the underlying cipher
- Exhaustive key search for keyed hash functions

Attacks on hash functions

- The birthday attack is based on the birthday paradox. For an n-bit hash function, one needs to compute on an average $2^{n / 2}$ hash values in order to detect (with high probability) a collision for the hash function.
- For cryptographic applications one requires $n \geqslant 128$ ($n \geqslant 160$ is preferable).
- Algebraic attacks may make hash functions vulnerable.
- Some other attacks:
- Pseudo-collision attacks
- Chaining attacks
- Attacks on the underlying cipher
- Exhaustive key search for keyed hash functions
- Long message attacks

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Part III: Public-key cryptosystems

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Intractable problems

Intractable problems

- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.

Cryptographic primitives

Intractable problems

- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems

Intractable problems

- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems
- Factoring composite integers

Intractable problems

- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems
- Factoring composite integers
- Computing square roots modulo a composite integer

Intractable problems

- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems
- Factoring composite integers
- Computing square roots modulo a composite integer
- Computing discrete logarithms in certain groups (finite fields, elliptic and hyperelliptic curves, class groups of number fields, etc.)

Intractable problems

- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems
- Factoring composite integers
- Computing square roots modulo a composite integer
- Computing discrete logarithms in certain groups (finite fields, elliptic and hyperelliptic curves, class groups of number fields, etc.)
- Finding shortest/closest vectors in a lattice

Intractable problems

- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems
- Factoring composite integers
- Computing square roots modulo a composite integer
- Computing discrete logarithms in certain groups (finite fields, elliptic and hyperelliptic curves, class groups of number fields, etc.)
- Finding shortest/closest vectors in a lattice
- Solving the subset sum problem

Intractable problems

- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems
- Factoring composite integers
- Computing square roots modulo a composite integer
- Computing discrete logarithms in certain groups (finite fields, elliptic and hyperelliptic curves, class groups of number fields, etc.)
- Finding shortest/closest vectors in a lattice
- Solving the subset sum problem
- Finding roots of non-linear multivariate polynomials

Intractable problems

- Public-key cryptography is based on trapdoor one-way functions. It should be easy to encrypt a message or verify a signature, but inverting the transform (decryption or signature generation) should be difficult, unless some secret information (the trapdoor) is known.
- Some difficult computational problems
- Factoring composite integers
- Computing square roots modulo a composite integer
- Computing discrete logarithms in certain groups (finite fields, elliptic and hyperelliptic curves, class groups of number fields, etc.)
- Finding shortest/closest vectors in a lattice
- Solving the subset sum problem
- Finding roots of non-linear multivariate polynomials
- Solving the braid conjugacy problem

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Intractable problems (contd.)

Cryptographic primitives

Intractable problems (contd.)

- Many sophisticated algorithms are proposed to break the trapdoor functions. Most of these are fully exponential. Subexponential algorithms are sometimes known.

Intractable problems (contd.)

- Many sophisticated algorithms are proposed to break the trapdoor functions. Most of these are fully exponential. Subexponential algorithms are sometimes known.
- For suitably chosen domain parameters, these algorithms take infeasible time.

Intractable problems (contd.)

- Many sophisticated algorithms are proposed to break the trapdoor functions. Most of these are fully exponential. Subexponential algorithms are sometimes known.
- For suitably chosen domain parameters, these algorithms take infeasible time.
- No non-trivial lower bounds on the complexity of these computational problems are known. Even existence of polynomial-time algorithms cannot be often ruled out.

Intractable problems (contd.)

- Many sophisticated algorithms are proposed to break the trapdoor functions. Most of these are fully exponential. Subexponential algorithms are sometimes known.
- For suitably chosen domain parameters, these algorithms take infeasible time.
- No non-trivial lower bounds on the complexity of these computational problems are known. Even existence of polynomial-time algorithms cannot be often ruled out.
- Certain special cases have been discovered to be cryptographically weak. For practical designs, it is essential to avoid these special cases.

Intractable problems (contd.)

- Many sophisticated algorithms are proposed to break the trapdoor functions. Most of these are fully exponential. Subexponential algorithms are sometimes known.
- For suitably chosen domain parameters, these algorithms take infeasible time.
- No non-trivial lower bounds on the complexity of these computational problems are known. Even existence of polynomial-time algorithms cannot be often ruled out.
- Certain special cases have been discovered to be cryptographically weak. For practical designs, it is essential to avoid these special cases.
- Polynomial-time quantum algorithms are known for factoring integers and computing discrete logarithms in finite fields.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Introduction to number theory

Introduction to number theory

- Common sets

$$
\begin{aligned}
\mathbb{N} & =\{1,2,3, \ldots\} \quad \text { (Natural numbers) } \\
\mathbb{N}_{0} & =\{0,1,2,3, \ldots\} \quad \text { (Non-negative integers) } \\
\mathbb{Z} & =\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \quad \text { (Integers) } \\
\mathbb{P} & =\{2,3,5,7,11,13, \ldots\} \quad \text { (Primes) }
\end{aligned}
$$

Introduction to number theory

- Common sets

$$
\begin{aligned}
\mathbb{N} & =\{1,2,3, \ldots\} \quad \text { (Natural numbers) } \\
\mathbb{N}_{0} & =\{0,1,2,3, \ldots\} \quad \text { (Non-negative integers) } \\
\mathbb{Z} & =\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \quad \text { (Integers) } \\
\mathbb{P} & =\{2,3,5,7,11,13, \ldots\} \quad \text { (Primes) }
\end{aligned}
$$

- Divisibility: $a \mid b$ if $b=a c$ for some $c \in \mathbb{Z}$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Introduction to number theory

- Common sets

$$
\begin{aligned}
\mathbb{N} & =\{1,2,3, \ldots\} \quad \text { (Natural numbers) } \\
\mathbb{N}_{0} & =\{0,1,2,3, \ldots\} \quad \text { (Non-negative integers) } \\
\mathbb{Z} & =\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \quad \text { (Integers) } \\
\mathbb{P} & =\{2,3,5,7,11,13, \ldots\} \quad \text { (Primes) }
\end{aligned}
$$

- Divisibility: $a \mid b$ if $b=a c$ for some $c \in \mathbb{Z}$.
- Corollary: If $a \mid b$, then $|a| \leqslant|b|$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Introduction to number theory

- Common sets

$$
\begin{aligned}
\mathbb{N} & =\{1,2,3, \ldots\} \quad \text { (Natural numbers) } \\
\mathbb{N}_{0} & =\{0,1,2,3, \ldots\} \quad \text { (Non-negative integers) } \\
\mathbb{Z} & =\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \quad \text { (Integers) } \\
\mathbb{P} & =\{2,3,5,7,11,13, \ldots\} \quad \text { (Primes) }
\end{aligned}
$$

- Divisibility: $a \mid b$ if $b=a c$ for some $c \in \mathbb{Z}$.
- Corollary: If $a \mid b$, then $|a| \leqslant|b|$.
- Theorem: There are infinitely many primes.

Introduction to number theory

- Common sets

$$
\begin{aligned}
\mathbb{N} & =\{1,2,3, \ldots\} \quad \text { (Natural numbers) } \\
\mathbb{N}_{0} & =\{0,1,2,3, \ldots\} \quad \text { (Non-negative integers) } \\
\mathbb{Z} & =\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \quad \text { (Integers) } \\
\mathbb{P} & =\{2,3,5,7,11,13, \ldots\} \quad \text { (Primes) }
\end{aligned}
$$

- Divisibility: $a \mid b$ if $b=a c$ for some $c \in \mathbb{Z}$.
- Corollary: If $a \mid b$, then $|a| \leqslant|b|$.
- Theorem: There are infinitely many primes.
- Euclidean division: Let $a, b \in \mathbb{Z}$ with $b>0$. There exist unique $q, r \in \mathbb{Z}$ with $a=q b+r$ and $0 \leqslant r<b$.

Introduction to number theory

- Common sets

$$
\begin{aligned}
\mathbb{N} & =\{1,2,3, \ldots\} \quad \text { (Natural numbers) } \\
\mathbb{N}_{0} & =\{0,1,2,3, \ldots\} \quad \text { (Non-negative integers) } \\
\mathbb{Z} & =\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \quad \text { (Integers) } \\
\mathbb{P} & =\{2,3,5,7,11,13, \ldots\} \quad \text { (Primes) }
\end{aligned}
$$

- Divisibility: $a \mid b$ if $b=a c$ for some $c \in \mathbb{Z}$.
- Corollary: If $a \mid b$, then $|a| \leqslant|b|$.
- Theorem: There are infinitely many primes.
- Euclidean division: Let $a, b \in \mathbb{Z}$ with $b>0$. There exist unique $q, r \in \mathbb{Z}$ with $a=q b+r$ and $0 \leqslant r<b$.
- Notations: $q=a$ quot $b, r=a$ rem b.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

GCD (Greatest common divisor)

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

GCD (Greatest common divisor)

- Let $a, b \in \mathbb{Z}$, not both zero. Then $d \in \mathbb{N}$ is called the gcd of a and b, if:
(1) $d \mid a$ and $d \mid b$.
(2) If $d^{\prime} \mid a$ and $d^{\prime} \mid b$, then $d^{\prime} \mid d$.

We denote $d=\operatorname{gcd}(a, b)$.

GCD (Greatest common divisor)

- Let $a, b \in \mathbb{Z}$, not both zero. Then $d \in \mathbb{N}$ is called the gcd of a and b, if:
(1) $d \mid a$ and $d \mid b$.
(2) If $d^{\prime} \mid a$ and $d^{\prime} \mid b$, then $d^{\prime} \mid d$.

We denote $d=\operatorname{gcd}(a, b)$.

- Euclidean gcd: $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \operatorname{rem} b)(f o r b>0)$.

GCD (Greatest common divisor)

- Let $a, b \in \mathbb{Z}$, not both zero. Then $d \in \mathbb{N}$ is called the gcd of a and b, if:
(1) $d \mid a$ and $d \mid b$.
(2) If $d^{\prime} \mid a$ and $d^{\prime} \mid b$, then $d^{\prime} \mid d$.

We denote $d=\operatorname{gcd}(a, b)$.

- Euclidean gcd: $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a$ rem $b)(f o r ~ b>0)$.
- Extended gcd: Let $a, b \in \mathbb{Z}$, not both zero. There exist $u, v \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=u a+v b
$$

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Example

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Example

$899=2 \times 319+261$,

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Example

$$
\begin{aligned}
& 899=2 \times 319+261 \\
& 319=1 \times 261+58
\end{aligned}
$$

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Example

$$
\begin{aligned}
& 899=2 \times 319+261 \\
& 319=1 \times 261+58 \\
& 261=4 \times 58+29
\end{aligned}
$$

Example

$$
\begin{aligned}
899 & =2 \times 319+261 \\
319 & =1 \times 261+58 \\
261 & =4 \times 58+29 \\
58 & =2 \times 29
\end{aligned}
$$

Example

$$
\begin{aligned}
899 & =2 \times 319+261 \\
319 & =1 \times 261+58 \\
261 & =4 \times 58+29 \\
58 & =2 \times 29
\end{aligned}
$$

Therefore, $\operatorname{gcd}(899,319)=29$

Example

$$
\begin{aligned}
899 & =2 \times 319+261 \\
319 & =1 \times 261+58 \\
261 & =4 \times 58+29 \\
58 & =2 \times 29
\end{aligned}
$$

Therefore, $\operatorname{gcd}(899,319)=29$

Extended gcd computation

Example

$$
\begin{aligned}
899 & =2 \times 319+261 \\
319 & =1 \times 261+58 \\
261 & =4 \times 58+29 \\
58 & =2 \times 29
\end{aligned}
$$

Therefore, $\operatorname{gcd}(899,319)=29$
Extended gcd computation
$29=261-4 \times 58$

Example

$$
\begin{aligned}
899 & =2 \times 319+261 \\
319 & =1 \times 261+58 \\
261 & =4 \times 58+29 \\
58 & =2 \times 29
\end{aligned}
$$

Therefore, $\operatorname{gcd}(899,319)=29$
Extended gcd computation
$29=261-4 \times 58$

$$
=261-4 \times(319-1 \times 261)=(-4) \times 319+5 \times 261
$$

Example

$$
\begin{aligned}
899 & =2 \times 319+261 \\
319 & =1 \times 261+58 \\
261 & =4 \times 58+29 \\
58 & =2 \times 29
\end{aligned}
$$

Therefore, $\operatorname{gcd}(899,319)=29$
Extended gcd computation
$29=261-4 \times 58$
$=261-4 \times(319-1 \times 261)=(-4) \times 319+5 \times 261$
$=(-4) \times 319+5 \times(899-2 \times 319)$

Example

$$
\begin{aligned}
899 & =2 \times 319+261 \\
319 & =1 \times 261+58 \\
261 & =4 \times 58+29 \\
58 & =2 \times 29
\end{aligned}
$$

Therefore, $\operatorname{gcd}(899,319)=29$
Extended gcd computation
$29=261-4 \times 58$

$$
=261-4 \times(319-1 \times 261)=(-4) \times 319+5 \times 261
$$

$$
=(-4) \times 319+5 \times(899-2 \times 319)
$$

$$
=5 \times 899+(-14) \times 319 .
$$

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular arithmetic

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular arithmetic

- Let $n \in \mathbb{N}$. Define $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular arithmetic

- Let $n \in \mathbb{N}$. Define $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$.
- Addition: $a+b(\bmod n)= \begin{cases}a+b & \text { if } a+b<n \\ a+b-n & \text { if } a+b \geqslant n\end{cases}$

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular arithmetic

- Let $n \in \mathbb{N}$. Define $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$.
- Addition: $a+b(\bmod n)= \begin{cases}a+b & \text { if } a+b<n \\ a+b-n & \text { if } a+b \geqslant n\end{cases}$
- Subtraction: $a-b(\bmod n)= \begin{cases}a-b & \text { if } a \geqslant b \\ a-b+n & \text { if } a<b\end{cases}$

Modular arithmetic

- Let $n \in \mathbb{N}$. Define $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$.
- Addition: $a+b(\bmod n)= \begin{cases}a+b & \text { if } a+b<n \\ a+b-n & \text { if } a+b \geqslant n\end{cases}$
- Subtraction: $a-b(\bmod n)= \begin{cases}a-b & \text { if } a \geqslant b \\ a-b+n & \text { if } a<b\end{cases}$
- Multiplication: $a b(\bmod n)=(a b)$ rem n.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular arithmetic

- Let $n \in \mathbb{N}$. Define $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$.
- Addition: $a+b(\bmod n)= \begin{cases}a+b & \text { if } a+b<n \\ a+b-n & \text { if } a+b \geqslant n\end{cases}$
- Subtraction: $a-b(\bmod n)= \begin{cases}a-b & \text { if } a \geqslant b \\ a-b+n & \text { if } a<b\end{cases}$
- Multiplication: $a b(\bmod n)=(a b)$ rem n.
- Inverse: $a \in \mathbb{Z}_{n}$ is called invertible modulo n if (ua) rem $n=1$ for some $u \in \mathbb{Z}_{n}$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular arithmetic

- Let $n \in \mathbb{N}$. Define $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$.
- Addition: $a+b(\bmod n)= \begin{cases}a+b & \text { if } a+b<n \\ a+b-n & \text { if } a+b \geqslant n\end{cases}$
- Subtraction: $a-b(\bmod n)= \begin{cases}a-b & \text { if } a \geqslant b \\ a-b+n & \text { if } a<b\end{cases}$
- Multiplication: $a b(\bmod n)=(a b)$ rem n.
- Inverse: $a \in \mathbb{Z}_{n}$ is called invertible modulo n if (ua) rem $n=1$ for some $u \in \mathbb{Z}_{n}$.
- Theorem: $a \in \mathbb{Z}_{n}$ is invertible modulo n if and only if $\operatorname{gcd}(a, n)=1$. In this case extended gcd gives $u a+v n=1$. We may take $0 \leqslant u<n$. We have $u=a^{-1}(\bmod n)$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Example of modular arithmetic

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Example of modular arithmetic

- Take $n=257, a=127, b=217$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Example of modular arithmetic

- Take $n=257, a=127, b=217$.
- Addition: $a+b=344>257$, so $a+b(\bmod n)=344-257=87$.

Example of modular arithmetic

- Take $n=257, a=127, b=217$.
- Addition: $a+b=344>257$, so $a+b(\bmod n)=344-257=87$.
- Subtraction: $a-b=-90<0$, so $a-b(\bmod n)=-90+257=167$.

Example of modular arithmetic

- Take $n=257, a=127, b=217$.
- Addition: $a+b=344>257$, so

$$
a+b(\bmod n)=344-257=87
$$

- Subtraction: $a-b=-90<0$, so $a-b(\bmod n)=-90+257=167$.
- Multiplication: $a b(\bmod n)=(127 \times 217)$ rem $257=27559$ rem $257=60$.

Example of modular arithmetic

- Take $n=257, a=127, b=217$.
- Addition: $a+b=344>257$, so

$$
a+b(\bmod n)=344-257=87
$$

- Subtraction: $a-b=-90<0$, so $a-b(\bmod n)=-90+257=167$.
- Multiplication: $a b(\bmod n)=(127 \times 217)$ rem $257=27559$ rem $257=60$.
- Inverse: $\operatorname{gcd}(b, n)=1=(-45) b+38 n$, so $b^{-1}(\bmod n)=-45+257=212$.

Example of modular arithmetic

- Take $n=257, a=127, b=217$.
- Addition: $a+b=344>257$, so

$$
a+b(\bmod n)=344-257=87
$$

- Subtraction: $a-b=-90<0$, so $a-b(\bmod n)=-90+257=167$.
- Multiplication: $a b(\bmod n)=(127 \times 217)$ rem $257=27559$ rem $257=60$.
- Inverse: $\operatorname{gcd}(b, n)=1=(-45) b+38 n$, so $b^{-1}(\bmod n)=-45+257=212$.
- Division:

$$
a / b(\bmod n)=a b^{-1}(\bmod n)=(127 \times 212) \text { rem } 257=196
$$

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Modular exponentiation: Slow algorithm

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular exponentiation: Slow algorithm

- Let $n \in \mathbb{N}, a \in \mathbb{Z}_{n}$ and $e \in \mathbb{N}_{0}$. To compute $a^{e}(\bmod n)$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular exponentiation: Slow algorithm

- Let $n \in \mathbb{N}, a \in \mathbb{Z}_{n}$ and $e \in \mathbb{N}_{0}$. To compute $a^{e}(\bmod n)$.
- Compute $a, a^{2}, a^{3}, \ldots, a^{e}$ successively by multiplying with a modulo n.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular exponentiation: Slow algorithm

- Let $n \in \mathbb{N}, a \in \mathbb{Z}_{n}$ and $e \in \mathbb{N}_{0}$. To compute $a^{e}(\bmod n)$.
- Compute $a, a^{2}, a^{3}, \ldots, a^{e}$ successively by multiplying with a modulo n.
- Example: $n=257, a=127, e=217$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular exponentiation: Slow algorithm

- Let $n \in \mathbb{N}, a \in \mathbb{Z}_{n}$ and $e \in \mathbb{N}_{0}$. To compute $a^{e}(\bmod n)$.
- Compute $a, a^{2}, a^{3}, \ldots, a^{e}$ successively by multiplying with a modulo n.
- Example: $n=257, a=127, e=217$.

$$
a^{2}=a \times a=195(\bmod n)
$$

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Modular exponentiation: Slow algorithm

- Let $n \in \mathbb{N}, a \in \mathbb{Z}_{n}$ and $e \in \mathbb{N}_{0}$. To compute $a^{e}(\bmod n)$.
- Compute $a, a^{2}, a^{3}, \ldots, a^{e}$ successively by multiplying with a modulo n.
- Example: $n=257, a=127, e=217$.

$$
\begin{aligned}
& a^{2}=a \times a=195(\bmod n) \\
& a^{3}=a^{2} \times a=195 \times 127=93(\bmod n)
\end{aligned}
$$

Cryptographic primitives

Modular exponentiation: Slow algorithm

- Let $n \in \mathbb{N}, a \in \mathbb{Z}_{n}$ and $e \in \mathbb{N}_{0}$. To compute $a^{e}(\bmod n)$.
- Compute $a, a^{2}, a^{3}, \ldots, a^{e}$ successively by multiplying with a modulo n.
- Example: $n=257, a=127, e=217$.

$$
\begin{aligned}
& a^{2}=a \times a=195(\bmod n), \\
& a^{3}=a^{2} \times a=195 \times 127=93(\bmod n), \\
& a^{4}=a^{3} \times a=93 \times 127=246(\bmod n),
\end{aligned}
$$

Cryptographic primitives

Modular exponentiation: Slow algorithm

- Let $n \in \mathbb{N}, a \in \mathbb{Z}_{n}$ and $e \in \mathbb{N}_{0}$. To compute $a^{e}(\bmod n)$.
- Compute $a, a^{2}, a^{3}, \ldots, a^{e}$ successively by multiplying with a modulo n.
- Example: $n=257, a=127, e=217$.

$$
\begin{aligned}
& a^{2}=a \times a=195(\bmod n), \\
& a^{3}=a^{2} \times a=195 \times 127=93(\bmod n), \\
& a^{4}=a^{3} \times a=93 \times 127=246(\bmod n),
\end{aligned}
$$

. . .

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular exponentiation: Slow algorithm

- Let $n \in \mathbb{N}, a \in \mathbb{Z}_{n}$ and $e \in \mathbb{N}_{0}$. To compute $a^{e}(\bmod n)$.
- Compute $a, a^{2}, a^{3}, \ldots, a^{e}$ successively by multiplying with a modulo n.
- Example: $n=257, a=127, e=217$.

$$
\begin{aligned}
a^{2} & =a \times a=195(\bmod n), \\
a^{3} & =a^{2} \times a=195 \times 127=93(\bmod n), \\
a^{4} & =a^{3} \times a=93 \times 127=246(\bmod n), \\
& \cdots \\
a^{216} & =a^{215} \times a=131 \times 127=189(\bmod n),
\end{aligned}
$$

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular exponentiation: Slow algorithm

- Let $n \in \mathbb{N}, a \in \mathbb{Z}_{n}$ and $e \in \mathbb{N}_{0}$. To compute $a^{e}(\bmod n)$.
- Compute $a, a^{2}, a^{3}, \ldots, a^{e}$ successively by multiplying with a modulo n.
- Example: $n=257, a=127, e=217$.

$$
\begin{aligned}
a^{2} & =a \times a=195(\bmod n), \\
a^{3} & =a^{2} \times a=195 \times 127=93(\bmod n), \\
a^{4} & =a^{3} \times a=93 \times 127=246(\bmod n), \\
& \cdots \\
a^{216} & =a^{215} \times a=131 \times 127=189(\bmod n), \\
a^{217} & =a^{216} \times a=189 \times 127=102(\bmod n) .
\end{aligned}
$$

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Modular exponentiation: Fast algorithm

Modular exponentiation: Fast algorithm

- Binary representation: $e=\left(e_{I-1} e_{I-2} \ldots e_{1} e_{0}\right)_{2}=$ $e_{l-1} 2^{I-1}+e_{l-2} 2^{I-2}+\cdots+e_{1} 2^{1}+e_{0} 2^{0}$.

Modular exponentiation: Fast algorithm

- Binary representation: $e=\left(e_{I-1} e_{I-2} \ldots e_{1} e_{0}\right)_{2}=$ $e_{I-1} 2^{I-1}+e_{I-2} 2^{I-2}+\cdots+e_{1} 2^{1}+e_{0} 2^{0}$.
- $a^{e}=\left(a^{2^{I-1}}\right)^{e_{l-1}}\left(a^{2^{-2}}\right)^{e_{l-2}} \cdots\left(a^{2^{1}}\right)^{e_{1}}\left(a^{2^{0}}\right)^{e_{0}}(\bmod n)$.

Cryptographic primitives

Modular exponentiation: Fast algorithm

- Binary representation: $e=\left(e_{I-1} e_{I-2} \ldots e_{1} e_{0}\right)_{2}=$ $e_{I-1} 2^{I-1}+e_{I-2} 2^{I-2}+\cdots+e_{1} 2^{1}+e_{0} 2^{0}$.
- $a^{e}=\left(a^{2^{l-1}}\right)^{e_{l-1}}\left(a^{2^{-2}}\right)^{e_{l-2}} \cdots\left(a^{2^{1}}\right)^{e_{1}}\left(a^{2^{0}}\right)^{e_{0}}(\bmod n)$.
- Compute a, $a^{2}, a^{2^{2}}, a^{2^{3}}, \ldots, a^{2^{l-1}}$ and multiply those $a^{2^{i}}$ modulo n for which $e_{i}=1$. Also for $i \geqslant 1$, we have $a^{2^{i}}=\left(a^{2^{i-1}}\right)^{2}(\bmod n)$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Modular exponentiation: Example

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Modular exponentiation: Example

- $n=257, a=127, e=217$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular exponentiation: Example

- $n=257, a=127, e=217$.
- $e=(11011001)_{2}=2^{7}+2^{6}+2^{4}+2^{3}+2^{0}$. So $a^{e}=a^{2^{7}} a^{2^{6}} a^{2^{4}} a^{2^{3}} a^{2^{0}}(\bmod n)$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular exponentiation: Example

- $n=257, a=127, e=217$.
- $e=(11011001)_{2}=2^{7}+2^{6}+2^{4}+2^{3}+2^{0}$. So $a^{e}=a^{2^{7}} a^{2^{6}} a^{2^{4}} a^{2^{3}} a^{2^{0}}(\bmod n)$.
- $a^{2}=195(\bmod n)$,

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular exponentiation: Example

- $n=257, a=127, e=217$.
- $e=(11011001)_{2}=2^{7}+2^{6}+2^{4}+2^{3}+2^{0}$. So $a^{e}=a^{2^{7}} a^{2^{6}} a^{2^{4}} a^{2^{3}} a^{2^{0}}(\bmod n)$.
- $a^{2}=195(\bmod n), a^{2^{2}}=(195)^{2}=246(\bmod n)$,

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular exponentiation: Example

- $n=257, a=127, e=217$.
- $e=(11011001)_{2}=2^{7}+2^{6}+2^{4}+2^{3}+2^{0}$. So $a^{e}=a^{2^{7}} a^{2^{6}} a^{2^{4}} a^{2^{3}} a^{2^{0}}(\bmod n)$.
- $a^{2}=195(\bmod n), a^{2^{2}}=(195)^{2}=246(\bmod n)$, $a^{2^{3}}=(246)^{2}=121(\bmod n)$,

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular exponentiation: Example

- $n=257, a=127, e=217$.
- $e=(11011001)_{2}=2^{7}+2^{6}+2^{4}+2^{3}+2^{0}$. So $a^{e}=a^{2^{7}} a^{2^{6}} a^{2^{4}} a^{2^{3}} a^{2^{0}}(\bmod n)$.
- $a^{2}=195(\bmod n), a^{2^{2}}=(195)^{2}=246(\bmod n)$, $a^{2^{3}}=(246)^{2}=121(\bmod n), a^{2^{4}}=(121)^{2}=249(\bmod n)$,

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modular exponentiation: Example

- $n=257, a=127, e=217$.
- $e=(11011001)_{2}=2^{7}+2^{6}+2^{4}+2^{3}+2^{0}$. So $a^{e}=a^{2^{7}} a^{2^{6}} a^{2^{4}} a^{2^{3}} a^{2^{0}}(\bmod n)$.
- $a^{2}=195(\bmod n), a^{2^{2}}=(195)^{2}=246(\bmod n)$, $a^{2^{3}}=(246)^{2}=121(\bmod n), a^{2^{4}}=(121)^{2}=249(\bmod n)$, $a^{2^{5}}=(249)^{2}=64(\bmod n)$,

Cryptographic primitives

Modular exponentiation: Example

- $n=257, a=127, e=217$.
- $e=(11011001)_{2}=2^{7}+2^{6}+2^{4}+2^{3}+2^{0}$. So $a^{e}=a^{2^{7}} a^{2^{6}} a^{2^{4}} a^{2^{3}} a^{2^{0}}(\bmod n)$.
- $a^{2}=195(\bmod n), a^{2^{2}}=(195)^{2}=246(\bmod n)$, $a^{2^{3}}=(246)^{2}=121(\bmod n), a^{2^{4}}=(121)^{2}=249(\bmod n)$,
$a^{2^{5}}=(249)^{2}=64(\bmod n), a^{2^{6}}=(64)^{2}=241(\bmod n)$ and

Cryptographic primitives

Modular exponentiation: Example

- $n=257, a=127, e=217$.
- $e=(11011001)_{2}=2^{7}+2^{6}+2^{4}+2^{3}+2^{0}$. So $a^{e}=a^{2^{7}} a^{2^{6}} a^{2^{4}} a^{2^{3}} a^{2^{0}}(\bmod n)$.
- $a^{2}=195(\bmod n), a^{2^{2}}=(195)^{2}=246(\bmod n)$, $a^{2^{3}}=(246)^{2}=121(\bmod n), a^{2^{4}}=(121)^{2}=249(\bmod n)$, $a^{2^{5}}=(249)^{2}=64(\bmod n), a^{2^{6}}=(64)^{2}=241(\bmod n)$ and $a^{2^{7}}=(241)^{2}=256(\bmod n)$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Modular exponentiation: Example

- $n=257, a=127, e=217$.
- $e=(11011001)_{2}=2^{7}+2^{6}+2^{4}+2^{3}+2^{0}$. So $a^{e}=a^{2^{7}} a^{2^{6}} a^{2^{4}} a^{2^{3}} a^{2^{0}}(\bmod n)$.
- $a^{2}=195(\bmod n), a^{2^{2}}=(195)^{2}=246(\bmod n)$, $a^{2^{3}}=(246)^{2}=121(\bmod n), a^{2^{4}}=(121)^{2}=249(\bmod n)$, $a^{2^{5}}=(249)^{2}=64(\bmod n), a^{2^{6}}=(64)^{2}=241(\bmod n)$ and $a^{2^{7}}=(241)^{2}=256(\bmod n)$.
- $a^{e}=256 \times 241 \times 249 \times 121 \times 127=102(\bmod n)$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Euler totient function

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Euler totient function

- Let $n \in \mathbb{N}$. Define

$$
\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}
$$

Thus, \mathbb{Z}_{n}^{*} is the set of all elements of \mathbb{Z}_{n} that are invertible modulo n.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Euler totient function

- Let $n \in \mathbb{N}$. Define

$$
\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}
$$

Thus, \mathbb{Z}_{n}^{*} is the set of all elements of \mathbb{Z}_{n} that are invertible modulo n.

- Call $\phi(n)=\left|\mathbb{Z}_{n}^{*}\right|$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Euler totient function

- Let $n \in \mathbb{N}$. Define

$$
\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}
$$

Thus, \mathbb{Z}_{n}^{*} is the set of all elements of \mathbb{Z}_{n} that are invertible modulo n.

- Call $\phi(n)=\left|\mathbb{Z}_{n}^{*}\right|$.
- Example: If p is a prime, then $\phi(p)=p-1$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Euler totient function

- Let $n \in \mathbb{N}$. Define

$$
\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}
$$

Thus, \mathbb{Z}_{n}^{*} is the set of all elements of \mathbb{Z}_{n} that are invertible modulo n.

- Call $\phi(n)=\left|\mathbb{Z}_{n}^{*}\right|$.
- Example: If p is a prime, then $\phi(p)=p-1$.
- Example: $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$. We have $\operatorname{gcd}(0,6)=6$, $\operatorname{gcd}(1,6)=1, \operatorname{gcd}(2,6)=2, \operatorname{gcd}(3,6)=3, \operatorname{gcd}(4,6)=2$, and $\operatorname{gcd}(5,6)=1$. So $\mathbb{Z}_{6}^{*}=\{1,5\}$, that is, $\phi(6)=2$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Euler totient function (contd.)

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Euler totient function (contd.)

- Theorem: Let $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ with distinct primes $p_{i} \in \mathbb{P}$ and with $e_{i} \in \mathbb{N}$. Then

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{r}}\right)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right) .
$$

Euler totient function (contd.)

- Theorem: Let $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ with distinct primes $p_{i} \in \mathbb{P}$ and with $e_{i} \in \mathbb{N}$. Then

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{r}}\right)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right) .
$$

- Fermat's little theorem: Let $p \in \mathbb{P}$ and $a \in \mathbb{Z}$ with $p \nmid$ a. Then $a^{p-1}=1(\bmod p)$.

Cryptographic primitives

Euler totient function (contd.)

- Theorem: Let $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ with distinct primes $p_{i} \in \mathbb{P}$ and with $e_{i} \in \mathbb{N}$. Then

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{r}}\right)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right) .
$$

- Fermat's little theorem: Let $p \in \mathbb{P}$ and $a \in \mathbb{Z}$ with $p \nmid$ a. Then $a^{p-1}=1(\bmod p)$.
- Euler's theorem: Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ with $\operatorname{gcd}(a, n)=1$. Then $a^{\phi(n)}=1(\bmod n)$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Multiplicative order

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Multiplicative order

- Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_{n}^{*}$. Define ord $_{n} a$ to be the smallest of the positive integers h for which $a^{h}=1(\bmod n)$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Multiplicative order

- Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_{n}^{*}$. Define ord $_{n} a$ to be the smallest of the positive integers h for which $a^{h}=1(\bmod n)$.
- Example: $n=17, a=2 . a^{1}=2(\bmod n), a^{2}=4(\bmod n)$, $a^{3}=8(\bmod n), a^{4}=16(\bmod n), a^{5}=15(\bmod n)$, $a^{6}=13(\bmod n), a^{7}=9(\bmod n)$, and $a^{8}=1(\bmod n)$. So $\operatorname{ord}_{17} 2=8$.

Multiplicative order

- Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_{n}^{*}$. Define ord $_{n} a$ to be the smallest of the positive integers h for which $a^{h}=1(\bmod n)$.
- Example: $n=17, a=2 . a^{1}=2(\bmod n), a^{2}=4(\bmod n)$, $a^{3}=8(\bmod n), a^{4}=16(\bmod n), a^{5}=15(\bmod n)$, $a^{6}=13(\bmod n), a^{7}=9(\bmod n)$, and $a^{8}=1(\bmod n)$. So $\operatorname{ord}_{17} 2=8$.
- Theorem: $a^{k}=1(\bmod n)$ if and only if $\operatorname{ord}_{n} a \mid k$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Multiplicative order

- Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_{n}^{*}$. Define ord $_{n} a$ to be the smallest of the positive integers h for which $a^{h}=1(\bmod n)$.
- Example: $n=17, a=2 . a^{1}=2(\bmod n), a^{2}=4(\bmod n)$, $a^{3}=8(\bmod n), a^{4}=16(\bmod n), a^{5}=15(\bmod n)$, $a^{6}=13(\bmod n), a^{7}=9(\bmod n)$, and $a^{8}=1(\bmod n)$. So $\operatorname{ord}_{17} 2=8$.
- Theorem: $a^{k}=1(\bmod n)$ if and only if $\operatorname{ord}_{n} a \mid k$.
- Theorem: Let $h=\operatorname{ord}_{n} a$. Then, $\operatorname{ord}_{n} a^{k}=h / \operatorname{gcd}(h, k)$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Multiplicative order

- Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}_{n}^{*}$. Define ord $_{n} a$ to be the smallest of the positive integers h for which $a^{h}=1(\bmod n)$.
- Example: $n=17, a=2 . a^{1}=2(\bmod n), a^{2}=4(\bmod n)$, $a^{3}=8(\bmod n), a^{4}=16(\bmod n), a^{5}=15(\bmod n)$, $a^{6}=13(\bmod n), a^{7}=9(\bmod n)$, and $a^{8}=1(\bmod n)$. So $\operatorname{ord}_{17} 2=8$.
- Theorem: $a^{k}=1(\bmod n)$ if and only if $\operatorname{ord}_{n} a \mid k$.
- Theorem: Let $h=\operatorname{ord}_{n} a$. Then, $\operatorname{ord}_{n} a^{k}=h / \operatorname{gcd}(h, k)$.
- Theorem: $\operatorname{ord}_{n} a \mid \phi(n)$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Primitive root

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Primitive root

- If $\operatorname{ord}_{n} a=\phi(n)$, then a is called a primitive root modulo n.

Primitive root

- If $\operatorname{ord}_{n} a=\phi(n)$, then a is called a primitive root modulo n.
- Theorem (Gauss): An integer $n>1$ has a primitive root if and only if $n=2,4, p^{e}, 2 p^{e}$, where p is an odd prime and $e \in \mathbb{N}$.

Primitive root

- If $\operatorname{ord}_{n} a=\phi(n)$, then a is called a primitive root modulo n.
- Theorem (Gauss): An integer $n>1$ has a primitive root if and only if $n=2,4, p^{e}, 2 p^{e}$, where p is an odd prime and $e \in \mathbb{N}$.
- Example: 3 is a primitive root modulo the prime $n=17$:

k
$3^{k}(\bmod 17)$
:---:

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Primitive root (contd.)

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Primitive root (contd.)

- Example: $n=2 \times 3^{2}=18$ has a primitive root 5 with order $\phi(18)=6:$

k	k	0	1	2	3	4	5
$5^{k}(\bmod 18)$	6						
	1	5	7	17	13	11	1

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Primitive root (contd.)

- Example: $n=2 \times 3^{2}=18$ has a primitive root 5 with order $\phi(18)=6$:

$5^{k}(\bmod 18)$| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 5 | 7 | 17 | 13 | 11 |

- Example: $n=20=2^{2} \times 5$ does not have a primitive root. We have $\phi(20)=8$, and the orders of the elements of \mathbb{Z}_{20}^{*} are $\operatorname{ord}_{20} 1=1, \operatorname{ord}_{20} 3=\operatorname{ord}_{20} 7=\operatorname{ord}_{20} 13=\operatorname{ord}_{20} 17=4$, and $\operatorname{ord}_{20} 9=\operatorname{ord}_{20} 19=2$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Discrete logarithm

Discrete logarithm

- Let $p \in \mathbb{P}, g$ a primitive root modulo p, and $a \in\{1,2, \ldots, p-1\}$. Then there exists a unique integer $x \in\{0,1,2, \ldots, p-2\}$ such that $g^{x}=a(\bmod p)$. We call x the index or discrete logarithm of a to the base g. We denote this by $x=\operatorname{ind}_{g}$ a.

Discrete logarithm

- Let $p \in \mathbb{P}, g$ a primitive root modulo p, and $a \in\{1,2, \ldots, p-1\}$. Then there exists a unique integer $x \in\{0,1,2, \ldots, p-2\}$ such that $g^{x}=a(\bmod p)$. We call x the index or discrete logarithm of a to the base g. We denote this by $x=\operatorname{ind}_{g}$ a.
- Indices follow arithmetic modulo $p-1$.

$$
\begin{aligned}
\operatorname{ind}_{g}(a b) & =\operatorname{ind}_{g} a+\operatorname{ind}_{g} b(\bmod p-1), \\
\operatorname{ind}_{g}\left(a^{e}\right) & =e \operatorname{ind}_{g} a(\bmod p-1) .
\end{aligned}
$$

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Discrete logarithm: Example

Discrete logarithm: Example

- Take $p=17$ and $g=3$.

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\mathrm{ind}_{3} \mathrm{a}$	0	14	1	12	5	15	11	10	2	3	7	13	4	9	6	8

Discrete logarithm: Example

- Take $p=17$ and $g=3$.
$\operatorname{ind}_{3} a$

- $\operatorname{ind}_{3} 6=15$ and $\operatorname{ind}_{3} 11=7$. Since $6 \times 11=15(\bmod 17)$, we have $\operatorname{ind}_{3} 15=\operatorname{ind}_{3} 6+\operatorname{ind}_{3} 11=15+7=6(\bmod 16)$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Common intractable problems of cryptography

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Common intractable problems of cryptography

Integer factorization problem (IFP): Given $n \in \mathbb{N}$, compute the complete prime factorization of n. Suppose there is an algorithm A that computes a non-trivial factor of n. We can use A repeatedly in order to compute the complete factorization of n. If $n=p q$ (with $p, q \in \mathbb{P}$), then computing p or q suffices.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems

Common intractable problems of cryptography

Integer factorization problem (IFP): Given $n \in \mathbb{N}$, compute the complete prime factorization of n. Suppose there is an algorithm A that computes a non-trivial factor of n. We can use A repeatedly in order to compute the complete factorization of n. If $n=p q$ (with $p, q \in \mathbb{P}$), then computing p or q suffices. Example

Input: $n=85067$.
Output: $85067=257 \times 331$.

Common intractable problems of cryptography

Integer factorization problem (IFP): Given $n \in \mathbb{N}$, compute the complete prime factorization of n. Suppose there is an algorithm A that computes a non-trivial factor of n. We can use A repeatedly in order to compute the complete factorization of n. If $n=p q$ (with $p, q \in \mathbb{P}$), then computing p or q suffices.
Example
Input: $n=85067$.
Output: $85067=257 \times 331$.
Discrete logarithm problem (DLP): Let $p \in \mathbb{P}$ and g a primitive root modulo p. Given $a \in \mathbb{Z}_{p}^{*}$, compute ind ${ }_{g} a$.

Common intractable problems of cryptography

Integer factorization problem (IFP): Given $n \in \mathbb{N}$, compute the complete prime factorization of n. Suppose there is an algorithm A that computes a non-trivial factor of n. We can use A repeatedly in order to compute the complete factorization of n. If $n=p q$ (with $p, q \in \mathbb{P}$), then computing p or q suffices.
Example
Input: $n=85067$.
Output: $85067=257 \times 331$.
Discrete logarithm problem (DLP): Let $p \in \mathbb{P}$ and g a primitive root modulo p. Given $a \in \mathbb{Z}_{p}^{*}$, compute ind g a. Example

$$
\text { Input: } p=17, g=3, a=11
$$

Output: $\operatorname{ind}_{g} a=7$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Intractable problems (contd)

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Intractable problems (contd)

- IFP and DLP are believed to be computationally very difficult.

Cryptographic primitives

Intractable problems (contd)

- IFP and DLP are believed to be computationally very difficult.
- The best known algorithms for IFP and DLP are subexponential.

Cryptographic primitives

Intractable problems (contd)

- IFP and DLP are believed to be computationally very difficult.
- The best known algorithms for IFP and DLP are subexponential.
- IFP is the inverse of the integer multiplication problem.

Cryptographic primitives

Intractable problems (contd)

- IFP and DLP are believed to be computationally very difficult.
- The best known algorithms for IFP and DLP are subexponential.
- IFP is the inverse of the integer multiplication problem.
- DLP is the inverse of the modular exponentiation problem.

Intractable problems (contd)

- IFP and DLP are believed to be computationally very difficult.
- The best known algorithms for IFP and DLP are subexponential.
- IFP is the inverse of the integer multiplication problem.
- DLP is the inverse of the modular exponentiation problem.
- Integer multiplication and modular exponentiation are easy computational problems. They are believed to be one-way functions.

Intractable problems (contd)

- IFP and DLP are believed to be computationally very difficult.
- The best known algorithms for IFP and DLP are subexponential.
- IFP is the inverse of the integer multiplication problem.
- DLP is the inverse of the modular exponentiation problem.
- Integer multiplication and modular exponentiation are easy computational problems. They are believed to be one-way functions.
- There is, however, no proof that IFP and DLP must be difficult.

Intractable problems (contd)

- IFP and DLP are believed to be computationally very difficult.
- The best known algorithms for IFP and DLP are subexponential.
- IFP is the inverse of the integer multiplication problem.
- DLP is the inverse of the modular exponentiation problem.
- Integer multiplication and modular exponentiation are easy computational problems. They are believed to be one-way functions.
- There is, however, no proof that IFP and DLP must be difficult.
- Efficient quantum algorithms exist for solving IFP and DLP.

Intractable problems (contd)

- IFP and DLP are believed to be computationally very difficult.
- The best known algorithms for IFP and DLP are subexponential.
- IFP is the inverse of the integer multiplication problem.
- DLP is the inverse of the modular exponentiation problem.
- Integer multiplication and modular exponentiation are easy computational problems. They are believed to be one-way functions.
- There is, however, no proof that IFP and DLP must be difficult.
- Efficient quantum algorithms exist for solving IFP and DLP.
- IFP and DLP are believed to be computationally equivalent.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Intractable problems (contd)

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Intractable problems (contd)

- Diffie-Hellman problem (DHP): Let $p \in \mathbb{P}$ and g a primitive root modulo p. Given g^{x} and g^{y} modulo p, compute $g^{x y}$ modulo p.

Intractable problems (contd)

- Diffie-Hellman problem (DHP): Let $p \in \mathbb{P}$ and g a primitive root modulo p. Given g^{x} and g^{y} modulo p, compute $g^{x y}$ modulo p.
- Example

Cryptographic primitives

Intractable problems (contd)

- Diffie-Hellman problem (DHP): Let $p \in \mathbb{P}$ and g a primitive root modulo p. Given g^{x} and g^{y} modulo p, compute $g^{x y}$ modulo p.
- Example
- Input: $p=17, g=3, g^{x}=11(\bmod p)$ and $g^{y}=13(\bmod p)$.

Cryptographic primitives

Intractable problems (contd)

- Diffie-Hellman problem (DHP): Let $p \in \mathbb{P}$ and g a primitive root modulo p. Given g^{x} and g^{y} modulo p, compute $g^{x y}$ modulo p.
- Example
- Input: $p=17, g=3, g^{x}=11(\bmod p)$ and $g^{y}=13(\bmod p)$.
- Output: $g^{x y}=4(\bmod p)$.

Cryptographic primitives

Intractable problems (contd)

- Diffie-Hellman problem (DHP): Let $p \in \mathbb{P}$ and g a primitive root modulo p. Given g^{x} and g^{y} modulo p, compute $g^{x y}$ modulo p.
- Example
- Input: $p=17, g=3, g^{x}=11(\bmod p)$ and $g^{y}=13(\bmod p)$.
- Output: $g^{x y}=4(\bmod p)$.
- $(x=7, y=4$, that is, $x y=28=12(\bmod p-1)$, that is, $\left.g^{x y}=3^{12}=4(\bmod p).\right)$

Cryptographic primitives

Intractable problems (contd)

- Diffie-Hellman problem (DHP): Let $p \in \mathbb{P}$ and g a primitive root modulo p. Given g^{x} and g^{y} modulo p, compute $g^{x y}$ modulo p.
- Example
- Input: $p=17, g=3, g^{x}=11(\bmod p)$ and $g^{y}=13(\bmod p)$.
- Output: $g^{x y}=4(\bmod p)$.
- $(x=7, y=4$, that is, $x y=28=12(\bmod p-1)$, that is, $\left.g^{x y}=3^{12}=4(\bmod p).\right)$
- DHP is another believably difficult computational problem.

Cryptographic primitives

Intractable problems (contd)

- Diffie-Hellman problem (DHP): Let $p \in \mathbb{P}$ and g a primitive root modulo p. Given g^{x} and g^{y} modulo p, compute $g^{x y}$ modulo p.
- Example
- Input: $p=17, g=3, g^{x}=11(\bmod p)$ and $g^{y}=13(\bmod p)$.
- Output: $g^{x y}=4(\bmod p)$.
- $(x=7, y=4$, that is, $x y=28=12(\bmod p-1)$, that is, $\left.g^{x y}=3^{12}=4(\bmod p).\right)$
- DHP is another believably difficult computational problem.
- If DLP can be solved, then DHP can be solved $\left(g^{x y}=\left(g^{x}\right)^{y}\right)$.

Cryptographic primitives

Intractable problems (contd)

- Diffie-Hellman problem (DHP): Let $p \in \mathbb{P}$ and g a primitive root modulo p. Given g^{x} and g^{y} modulo p, compute $g^{x y}$ modulo p.
- Example
- Input: $p=17, g=3, g^{x}=11(\bmod p)$ and $g^{y}=13(\bmod p)$.
- Output: $g^{x y}=4(\bmod p)$.
- $(x=7, y=4$, that is, $x y=28=12(\bmod p-1)$, that is, $\left.g^{x y}=3^{12}=4(\bmod p).\right)$
- DHP is another believably difficult computational problem.
- If DLP can be solved, then DHP can be solved $\left(g^{x y}=\left(g^{x}\right)^{y}\right)$.
- The converse is only believed to be true.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

RSA encryption

RSA encryption

- Key generation

The recipient generates two random large primes p, q, computes $n=p q$ and $\phi(n)=(p-1)(q-1)$, finds a random integer e with $\operatorname{gcd}(e, \phi(n))=1$, and determines an integer d with $e d=1(\bmod \phi(n))$.

Public key: (n, e).
Private key: (n, d).

RSA encryption

- Key generation

The recipient generates two random large primes p, q, computes $n=p q$ and $\phi(n)=(p-1)(q-1)$, finds a random integer e with $\operatorname{gcd}(e, \phi(n))=1$, and determines an integer d with $e d=1(\bmod \phi(n))$.

Public key: (n, e).
Private key: (n, d).

- Encryption

Input: Plaintext $m \in \mathbb{Z}_{n}$ and the recipient's public key (n, e). Output: Ciphertext $c=m^{e}(\bmod n)$.

RSA encryption

- Key generation

The recipient generates two random large primes p, q, computes $n=p q$ and $\phi(n)=(p-1)(q-1)$, finds a random integer e with $\operatorname{gcd}(e, \phi(n))=1$, and determines an integer d with $e d=1(\bmod \phi(n))$.

Public key: (n, e).
Private key: (n, d).

- Encryption

Input: Plaintext $m \in \mathbb{Z}_{n}$ and the recipient's public key (n, e).
Output: Ciphertext $c=m^{e}(\bmod n)$.

- Decryption

Input: Ciphertext c and the recipient's private key (n, d).
Output: Plaintext $m=c^{d}(\bmod n)$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Miscellaneous cryptosystems

Example of RSA encryption

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Example of RSA encryption

- Let $p=257, q=331$, so that $n=p q=85067$ and $\phi(n)=(p-1)(q-1)=84480$. Take $e=7$, so that $d=e^{-1}=60343(\bmod \phi(n))$.

Public key: $(85067,7)$.
Private key: $(85067,60343)$.

Example of RSA encryption

- Let $p=257, q=331$, so that $n=p q=85067$ and $\phi(n)=(p-1)(q-1)=84480$. Take $e=7$, so that $d=e^{-1}=60343(\bmod \phi(n))$.

Public key: $(85067,7)$.
Private key: $(85067,60343)$.

- Let $m=34152$. Then $c=m^{e}=(34152)^{7}=53384(\bmod n)$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Example of RSA encryption

- Let $p=257, q=331$, so that $n=p q=85067$ and $\phi(n)=(p-1)(q-1)=84480$. Take $e=7$, so that $d=e^{-1}=60343(\bmod \phi(n))$.

Public key: $(85067,7)$.
Private key: $(85067,60343)$.

- Let $m=34152$. Then $c=m^{e}=(34152)^{7}=53384(\bmod n)$.
- Recover $m=c^{d}=(53384)^{60343}=34152(\bmod n)$.

Example of RSA encryption

- Let $p=257, q=331$, so that $n=p q=85067$ and $\phi(n)=(p-1)(q-1)=84480$. Take $e=7$, so that $d=e^{-1}=60343(\bmod \phi(n))$.

Public key: $(85067,7)$.
Private key: $(85067,60343)$.

- Let $m=34152$. Then $c=m^{e}=(34152)^{7}=53384(\bmod n)$.
- Recover $m=c^{d}=(53384)^{60343}=34152(\bmod n)$.
- Decryption by an exponent d^{\prime} other than d does not give back m. For example, take $d^{\prime}=38367$. We have $m^{\prime}=c^{d^{\prime}}=(53384)^{38367}=71303(\bmod n)$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Why RSA works?

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Why RSA works?

- Assume that $m \in \mathbb{Z}_{n}^{*}$. By Euler's theorem, $m^{\phi(n)}=1(\bmod n)$.

Why RSA works?

- Assume that $m \in \mathbb{Z}_{n}^{*}$. By Euler's theorem, $m^{\phi(n)}=1(\bmod n)$.
- Now, ed $=1(\bmod \phi(n))$, that is, $e d=1+k \phi(n)$ for some integer k. Therefore,

$$
c^{d}=m^{e d}=m^{1+k \phi(n)}=m \times\left(m^{\phi(n)}\right)^{k}=m \times 1^{k}=m(\bmod n) .
$$

Why RSA works?

- Assume that $m \in \mathbb{Z}_{n}^{*}$. By Euler's theorem, $m^{\phi(n)}=1(\bmod n)$.
- Now, ed $=1(\bmod \phi(n))$, that is, $e d=1+k \phi(n)$ for some integer k. Therefore,

$$
c^{d}=m^{e d}=m^{1+k \phi(n)}=m \times\left(m^{\phi(n)}\right)^{k}=m \times 1^{k}=m(\bmod n) .
$$

- Note: The message can be recovered uniquely even when $m \notin \mathbb{Z}_{n}^{*}$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

RSA signature

Cryptographic primitives

RSA signature

- Key generation

The signer generates two random large primes p, q, computes $n=p q$ and $\phi(n)=(p-1)(q-1)$, finds a random integer e with $\operatorname{gcd}(e, \phi(n))=1$, and determines an integer d with $e d=1(\bmod \phi(n))$.

Public key: (n, e).
Private key: (n, d).

RSA signature

- Key generation

The signer generates two random large primes p, q, computes $n=p q$ and $\phi(n)=(p-1)(q-1)$, finds a random integer e with $\operatorname{gcd}(e, \phi(n))=1$, and determines an integer d with $e d=1(\bmod \phi(n))$.

Public key: (n, e).
Private key: (n, d).

- Signature generation

Input: Message $m \in \mathbb{Z}_{n}$ and signer's private key (n, d).
Output: Signed message (m, s) with $s=m^{d}(\bmod n)$.

RSA signature

- Key generation

The signer generates two random large primes p, q, computes $n=p q$ and $\phi(n)=(p-1)(q-1)$, finds a random integer e with $\operatorname{gcd}(e, \phi(n))=1$, and determines an integer d with $e d=1(\bmod \phi(n))$.

Public key: (n, e).
Private key: (n, d).

- Signature generation

Input: Message $m \in \mathbb{Z}_{n}$ and signer's private key (n, d).
Output: Signed message (m, s) with $s=m^{d}(\bmod n)$.

- Signature verification

Input: Signed message (m, s) and signer's public key (n, e).
Output: "Signature verified" if $s^{e}=m(\bmod n)$,
"Signature not verified" if $s^{e} \neq m(\bmod n)$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Miscellaneous cryptosystems

Example of RSA signature

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Example of RSA signature

- Let $p=257, q=331$, so that $m=p q=85067$ and $\phi(n)=(p-1)(q-1)=84480$. Take $e=19823$, so that $d=e^{-1}=71567(\bmod \phi(n))$.

Public key: $(85067,19823)$.
Private key: $(85067,71567)$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Example of RSA signature

- Let $p=257, q=331$, so that $m=p q=85067$ and $\phi(n)=(p-1)(q-1)=84480$. Take $e=19823$, so that $d=e^{-1}=71567(\bmod \phi(n))$.

Public key: $(85067,19823)$.
Private key: $(85067,71567)$.

- Let $m=3759$ be the message to be signed. Generate $s=m^{d}=13728(\bmod n)$. The signed message is $(3759,13728)$.

Example of RSA signature

- Let $p=257, q=331$, so that $m=p q=85067$ and $\phi(n)=(p-1)(q-1)=84480$. Take $e=19823$, so that $d=e^{-1}=71567(\bmod \phi(n))$.

Public key: $(85067,19823)$.
Private key: $(85067,71567)$.

- Let $m=3759$ be the message to be signed. Generate $s=m^{d}=13728(\bmod n)$. The signed message is (3759, 13728).
- Verification of $(m, s)=(3759,13728)$ involves the computation of $s^{e}=(13728)^{19823}=3759(\bmod n)$. Since this equals m, the signature is verified.

Example of RSA signature

- Let $p=257, q=331$, so that $m=p q=85067$ and $\phi(n)=(p-1)(q-1)=84480$. Take $e=19823$, so that $d=e^{-1}=71567(\bmod \phi(n))$.

Public key: $(85067,19823)$.
Private key: $(85067,71567)$.

- Let $m=3759$ be the message to be signed. Generate $s=m^{d}=13728(\bmod n)$. The signed message is (3759, 13728).
- Verification of $(m, s)=(3759,13728)$ involves the computation of $s^{e}=(13728)^{19823}=3759(\bmod n)$. Since this equals m, the signature is verified.
- Verification of a forged signature $(m, s)=(3759,42954)$ gives $s^{e}=(42954)^{19823}=22968(\bmod n)$. Since $s^{e} \neq m(\bmod n)$, the forged signature is not verified.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Miscellaneous cryptosystems

Security of RSA

Cryptographic primitives

Security of RSA

- If n can be factored, $\phi(n)$ can be computed and so d can be determined from e by extended gcd computation. Once d is known, any ciphertext can be decrypted and any signature can be forged.

Cryptographic primitives

Security of RSA

- If n can be factored, $\phi(n)$ can be computed and so d can be determined from e by extended gcd computation. Once d is known, any ciphertext can be decrypted and any signature can be forged.
- At present no other method is known to decrypt RSA-encrypted messages or forge RSA signatures.

Security of RSA

- If n can be factored, $\phi(n)$ can be computed and so d can be determined from e by extended gcd computation. Once d is known, any ciphertext can be decrypted and any signature can be forged.
- At present no other method is known to decrypt RSA-encrypted messages or forge RSA signatures.
- RSA derives security from the intractability of the IFP.

Security of RSA

- If n can be factored, $\phi(n)$ can be computed and so d can be determined from e by extended gcd computation. Once d is known, any ciphertext can be decrypted and any signature can be forged.
- At present no other method is known to decrypt RSA-encrypted messages or forge RSA signatures.
- RSA derives security from the intractability of the IFP.
- If e, d, n are known, there exists a probabilistic polynomial-time algorithm to factor n. So RSA key inversion is as difficult as IFP. But RSA decryption or signature forging without the knowledge of d may be easier than factoring n.

Security of RSA

- If n can be factored, $\phi(n)$ can be computed and so d can be determined from e by extended gcd computation. Once d is known, any ciphertext can be decrypted and any signature can be forged.
- At present no other method is known to decrypt RSA-encrypted messages or forge RSA signatures.
- RSA derives security from the intractability of the IFP.
- If e, d, n are known, there exists a probabilistic polynomial-time algorithm to factor n. So RSA key inversion is as difficult as IFP. But RSA decryption or signature forging without the knowledge of d may be easier than factoring n.
- In practice, we require the size of n to be $\geqslant 1024$ bits with each of p, q having nearly half the size of n.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Diffie-Hellman key exchange

Diffie-Hellman key exchange

- Alice and Bob decide about a prime p and a primitive root g modulo p.

Diffie-Hellman key exchange

- Alice and Bob decide about a prime p and a primitive root g modulo p.
- Alice generates a random $a \in\{2,3, \ldots, p-2\}$ and sends $g^{a}(\bmod p)$ to Bob.

Diffie-Hellman key exchange

- Alice and Bob decide about a prime p and a primitive root g modulo p.
- Alice generates a random $a \in\{2,3, \ldots, p-2\}$ and sends $g^{a}(\bmod p)$ to Bob.
- Bob generates a random $b \in\{2,3, \ldots, p-2\}$ and sends $g^{b}(\bmod p)$ to Alice.

Diffie-Hellman key exchange

- Alice and Bob decide about a prime p and a primitive root g modulo p.
- Alice generates a random $a \in\{2,3, \ldots, p-2\}$ and sends $g^{a}(\bmod p)$ to Bob.
- Bob generates a random $b \in\{2,3, \ldots, p-2\}$ and sends $g^{b}(\bmod p)$ to Alice.
- Alice computes $g^{a b}=\left(g^{b}\right)^{a}(\bmod p)$.

Diffie-Hellman key exchange

- Alice and Bob decide about a prime p and a primitive root g modulo p.
- Alice generates a random $a \in\{2,3, \ldots, p-2\}$ and sends $g^{a}(\bmod p)$ to Bob.
- Bob generates a random $b \in\{2,3, \ldots, p-2\}$ and sends $g^{b}(\bmod p)$ to Alice.
- Alice computes $g^{a b}=\left(g^{b}\right)^{a}(\bmod p)$.
- Bob computes $g^{a b}=\left(g^{a}\right)^{b}(\bmod p)$.

Cryptographic primitives

Diffie-Hellman key exchange

- Alice and Bob decide about a prime p and a primitive root g modulo p.
- Alice generates a random $a \in\{2,3, \ldots, p-2\}$ and sends $g^{a}(\bmod p)$ to Bob.
- Bob generates a random $b \in\{2,3, \ldots, p-2\}$ and sends $g^{b}(\bmod p)$ to Alice.
- Alice computes $g^{a b}=\left(g^{b}\right)^{a}(\bmod p)$.
- Bob computes $g^{a b}=\left(g^{a}\right)^{b}(\bmod p)$.
- The quantity $g^{a b}(\bmod p)$ is the secret shared by Alice and Bob.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Example of Diffie-Hellman key exchange

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Example of Diffie-Hellman key exchange

- Alice and Bob first take $p=91573, g=67$.

Example of Diffie-Hellman key exchange

- Alice and Bob first take $p=91573, g=67$.
- Alice generates $a=39136$ and sends $g^{a}=48745(\bmod p)$ to Bob.

Example of Diffie-Hellman key exchange

- Alice and Bob first take $p=91573, g=67$.
- Alice generates $a=39136$ and sends $g^{a}=48745(\bmod p)$ to Bob.
- Bob generates $b=8294$ and sends $g^{b}=69167(\bmod p)$ to Alice.

Example of Diffie-Hellman key exchange

- Alice and Bob first take $p=91573, g=67$.
- Alice generates $a=39136$ and sends $g^{a}=48745(\bmod p)$ to Bob.
- Bob generates $b=8294$ and sends $g^{b}=69167(\bmod p)$ to Alice.
- Alice computes $(69167)^{39136}=71989(\bmod p)$.

Example of Diffie-Hellman key exchange

- Alice and Bob first take $p=91573, g=67$.
- Alice generates $a=39136$ and sends $g^{a}=48745(\bmod p)$ to Bob.
- Bob generates $b=8294$ and sends $g^{b}=69167(\bmod p)$ to Alice.
- Alice computes $(69167)^{39136}=71989(\bmod p)$.
- Bob computes $(48745)^{8294}=71989(\bmod p)$.

Example of Diffie-Hellman key exchange

- Alice and Bob first take $p=91573, g=67$.
- Alice generates $a=39136$ and sends $g^{a}=48745(\bmod p)$ to Bob.
- Bob generates $b=8294$ and sends $g^{b}=69167(\bmod p)$ to Alice.
- Alice computes $(69167)^{39136}=71989(\bmod p)$.
- Bob computes $(48745)^{8294}=71989(\bmod p)$.
- The secret shared by Alice and Bob is 71989 .

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Security of DH key exchange

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Security of DH key exchange

- An eavesdropper knows p, g, g^{a}, g^{b} and desires to compute $g^{a b}(\bmod p)$, that is, the eavesdropper has to solve the DHP.

Cryptographic primitives

Security of DH key exchange

- An eavesdropper knows p, g, g^{a}, g^{b} and desires to compute $g^{a b}(\bmod p)$, that is, the eavesdropper has to solve the DHP.
- If discrete logs can be computed in \mathbb{Z}_{p}^{*}, then a can be computed from g^{a} and one subsequently obtains $g^{a b}=\left(g^{b}\right)^{a}(\bmod p)$. So algorithms for solving the DLP can be used to break DH key exchange.

Cryptographic primitives

Security of DH key exchange

- An eavesdropper knows p, g, g^{a}, g^{b} and desires to compute $g^{a b}(\bmod p)$, that is, the eavesdropper has to solve the DHP.
- If discrete logs can be computed in \mathbb{Z}_{p}^{*}, then a can be computed from g^{a} and one subsequently obtains $g^{a b}=\left(g^{b}\right)^{a}(\bmod p)$. So algorithms for solving the DLP can be used to break DH key exchange.
- Breaking DH key exchange may be easier than solving DLP.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Security of DH key exchange

- An eavesdropper knows p, g, g^{a}, g^{b} and desires to compute $g^{a b}(\bmod p)$, that is, the eavesdropper has to solve the DHP.
- If discrete logs can be computed in \mathbb{Z}_{p}^{*}, then a can be computed from g^{a} and one subsequently obtains $g^{a b}=\left(g^{b}\right)^{a}(\bmod p)$. So algorithms for solving the DLP can be used to break DH key exchange.
- Breaking DH key exchange may be easier than solving DLP.
- At present, no method other than computing discrete logs in \mathbb{Z}_{p}^{*} is known to break DH key exchange.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Security of DH key exchange

- An eavesdropper knows p, g, g^{a}, g^{b} and desires to compute $g^{a b}(\bmod p)$, that is, the eavesdropper has to solve the DHP.
- If discrete logs can be computed in \mathbb{Z}_{p}^{*}, then a can be computed from g^{a} and one subsequently obtains $g^{a b}=\left(g^{b}\right)^{a}(\bmod p)$. So algorithms for solving the DLP can be used to break DH key exchange.
- Breaking DH key exchange may be easier than solving DLP.
- At present, no method other than computing discrete logs in \mathbb{Z}_{p}^{*} is known to break DH key exchange.
- Practically, we require p to be of size $\geqslant 1024$ bits. The security does not depend on the choice of g. However, a and b must be sufficiently randomly chosen.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

EIGamal encryption

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

ElGamal encryption

- Key generation

The recipient selects a random big prime p and a primitive root g modulo p, chooses a random $d \in\{2,3, \ldots, p-2\}$, and computes $y=g^{d}(\bmod p)$.

Public key: (p, g, y).
Private key: (p, g, d).

EIGamal encryption

- Key generation

The recipient selects a random big prime p and a primitive root g modulo p, chooses a random $d \in\{2,3, \ldots, p-2\}$, and computes $y=g^{d}(\bmod p)$.

Public key: (p, g, y).
Private key: (p, g, d).

- Encryption

Input: Plaintext $m \in \mathbb{Z}_{p}$ and recipient's public key (p, g, y).
Output: Ciphertext (s, t).
Generate a random integer $d^{\prime} \in\{2,3, \ldots, p-2\}$.
Compute $s=g^{d^{\prime \prime}}(\bmod p)$ and $t=m y^{d^{\prime \prime}}(\bmod p)$.

EIGamal encryption

- Key generation

The recipient selects a random big prime p and a primitive root g modulo p, chooses a random $d \in\{2,3, \ldots, p-2\}$, and computes $y=g^{d}(\bmod p)$.

Public key: (p, g, y).
Private key: (p, g, d).

- Encryption

Input: Plaintext $m \in \mathbb{Z}_{p}$ and recipient's public key (p, g, y).
Output: Ciphertext (s, t).
Generate a random integer $d^{\prime} \in\{2,3, \ldots, p-2\}$.
Compute $s=g^{d^{\prime}}(\bmod p)$ and $t=m y^{d^{\prime}}(\bmod p)$.

- Decryption Input: Ciphertext (s, t) and recipient's private key (p, g, d). Output: Recovered plaintext $m=t s^{-d}(\bmod p)$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

EIGamal encryption (contd.)

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

EIGamal encryption (contd.)

- Correctness: We have $s=g^{d^{\prime}}(\bmod p)$ and $t=m y^{d^{\prime}}=m\left(g^{d}\right)^{d^{\prime}}=m g^{d d^{\prime}}(\bmod p)$. Therefore, $m=t g^{-d d^{\prime}}=t\left(g^{d^{\prime}}\right)^{-d}=t s^{-d}(\bmod p)$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

EIGamal encryption (contd.)

- Correctness: We have $s=g^{d^{\prime}}(\bmod p)$ and $t=m y^{d^{\prime}}=m\left(g^{d}\right)^{d^{\prime}}=m g^{d d^{\prime}}(\bmod p)$. Therefore, $m=t g^{-d d^{\prime}}=t\left(g^{d^{\prime}}\right)^{-d}=t s^{-d}(\bmod p)$.
- Example of EIGamal encryption

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

EIGamal encryption (contd.)

- Correctness: We have $s=g^{d^{\prime}}(\bmod p)$ and $t=m y^{d^{\prime}}=m\left(g^{d}\right)^{d^{\prime}}=m g^{d d^{\prime}}(\bmod p)$. Therefore, $m=t g^{-d d^{\prime}}=t\left(g^{d^{\prime}}\right)^{-d}=t s^{-d}(\bmod p)$.
- Example of ElGamal encryption
- Take $p=91573$ and $g=67$. The recipient chooses $d=23632$ and so $y=(67)^{23632}=87955(\bmod p)$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

EIGamal encryption (contd.)

- Correctness: We have $s=g^{d^{\prime}}(\bmod p)$ and $t=m y^{d^{\prime}}=m\left(g^{d}\right)^{d^{\prime}}=m g^{d d^{\prime}}(\bmod p)$. Therefore, $m=t g^{-d d^{\prime}}=t\left(g^{d^{\prime}}\right)^{-d}=t s^{-d}(\bmod p)$.
- Example of EIGamal encryption
- Take $p=91573$ and $g=67$. The recipient chooses $d=23632$ and so $y=(67)^{23632}=87955(\bmod p)$.
- Let $m=29485$ be the message to be encrypted. The sender chooses $d^{\prime}=1783$ and computes $s=g^{d^{\prime}}=52958(\bmod p)$ and $t=m y^{d^{\prime}}=1597(\bmod p)$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

EIGamal encryption (contd.)

- Correctness: We have $s=g^{d^{\prime}}(\bmod p)$ and $t=m y^{d^{\prime}}=m\left(g^{d}\right)^{d^{\prime}}=m g^{d d^{\prime}}(\bmod p)$. Therefore, $m=t g^{-d d^{\prime}}=t\left(g^{d^{\prime}}\right)^{-d}=t s^{-d}(\bmod p)$.
- Example of EIGamal encryption
- Take $p=91573$ and $g=67$. The recipient chooses $d=23632$ and so $y=(67)^{23632}=87955(\bmod p)$.
- Let $m=29485$ be the message to be encrypted. The sender chooses $d^{\prime}=1783$ and computes

$$
s=g^{d^{\prime}}=52958(\bmod p) \text { and } t=m y^{d^{\prime}}=1597(\bmod p)
$$

- The recipient retrieves

$$
m=t s^{-d}=1597 \times(52958)^{-23632}=29485(\bmod p) .
$$

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
EIGamal cryptosystems
Miscellaneous cryptosystems

Security of EIGamal encryption

Security of ElGamal encryption

- An eavesdropper knows g, p, y, s, t, where $y=g^{d}(\bmod p)$ and $s=g^{d^{\prime}}(\bmod p)$. Determining m from (s, t) is equivalent to computing $g^{d d^{\prime}}(\bmod p)$, since $t=m g^{d d^{\prime}}(\bmod p)$. (Here, m is masked by the quantity $\left.g^{d d^{\prime}}(\bmod p).\right)$ But d, d^{\prime} are unknown to the attacker. So the ability to solve the DHP lets the eavesdropper break ElGamal encryption.

Security of ElGamal encryption

- An eavesdropper knows g, p, y, s, t, where $y=g^{d}(\bmod p)$ and $s=g^{d^{\prime}}(\bmod p)$. Determining m from (s, t) is equivalent to computing $g^{d d^{\prime}}(\bmod p)$, since $t=m g^{d d^{\prime}}(\bmod p)$. (Here, m is masked by the quantity $\left.g^{d d^{\prime}}(\bmod p).\right)$ But d, d^{\prime} are unknown to the attacker. So the ability to solve the DHP lets the eavesdropper break ElGamal encryption.
- Practically, we require p to be of size $\geqslant 1024$ bits for achieving a good level of security.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

EIGamal signature

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

EIGamal signature

- Key generation

Like ElGamal encryption, one chooses p, g and computes a key-pair (y, d) where $y=g^{d}(\bmod p)$. The public key is (p, g, y), and the private key is (p, g, d).

Cryptographic primitives

ElGamal signature

- Key generation

Like EIGamal encryption, one chooses p, g and computes a key-pair (y, d) where $y=g^{d}(\bmod p)$. The public key is (p, g, y), and the private key is (p, g, d).

- Signature generation

Input: Message $m \in \mathbb{Z}_{p}$ and signer's private key (p, g, d).
Output: Signed message (m, s, t).
Generate a random session key $d^{\prime} \in\{2,3, \ldots, p-2\}$.
Compute $s=g^{d^{\prime \prime}}(\bmod p)$ and
$t=d^{\prime-1}(H(m)-d H(s))(\bmod p-1)$.

ElGamal signature

- Key generation

Like ElGamal encryption, one chooses p, g and computes a key-pair (y, d) where $y=g^{d}(\bmod p)$. The public key is (p, g, y), and the private key is (p, g, d).

- Signature generation

Input: Message $m \in \mathbb{Z}_{p}$ and signer's private key (p, g, d).
Output: Signed message (m, s, t).
Generate a random session key $d^{\prime} \in\{2,3, \ldots, p-2\}$.
Compute $s=g^{d^{\prime \prime}}(\bmod p)$ and

$$
t=d^{\prime-1}(H(m)-d H(s))(\bmod p-1) .
$$

- Signature verification

Input: Signed message (m, s, t) and signer's public key (p, g, y). Set $a_{1}=g^{H(m)}(\bmod p)$ and $a_{2}=y^{H(s)} s^{t}(\bmod p)$.
Output "signature verified" if and only if $a_{1}=a_{2}$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

ElGamal signature (contd.)

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

EIGamal signature (contd.)

- Correctness: $H(m)=d H(s)+t d^{\prime}(\bmod p-1)$. So $a_{1}=g^{H(m)}=\left(g^{d}\right)^{H(s)}\left(g^{d^{\prime}}\right)^{t}=y^{H(s)} s^{t}=a_{2}(\bmod p)$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

EIGamal signature (contd.)

- Correctness: $H(m)=d H(s)+t d^{\prime}(\bmod p-1)$. So $a_{1}=g^{H(m)}=\left(g^{d}\right)^{H(s)}\left(g^{d^{\prime}}\right)^{t}=y^{H(s)} s^{t}=a_{2}(\bmod p)$.
- Example:

EIGamal signature (contd.)

- Correctness: $H(m)=d H(s)+t d^{\prime}(\bmod p-1)$. So $a_{1}=g^{H(m)}=\left(g^{d}\right)^{H(s)}\left(g^{d^{\prime}}\right)^{t}=y^{H(s)} s^{t}=a_{2}(\bmod p)$.
- Example:
- Take $p=104729$ and $g=89$. The signer chooses the private exponent $d=72135$ and so $y=g^{d}=98771(\bmod p)$.

ElGamal signature (contd.)

- Correctness: $H(m)=d H(s)+t d^{\prime}(\bmod p-1)$. So $a_{1}=g^{H(m)}=\left(g^{d}\right)^{H(s)}\left(g^{d^{\prime}}\right)^{t}=y^{H(s)} s^{t}=a_{2}(\bmod p)$.
- Example:
- Take $p=104729$ and $g=89$. The signer chooses the private exponent $d=72135$ and so $y=g^{d}=98771(\bmod p)$.
- Let $m=23456$ be the message to be signed. The signer chooses the session exponent $d^{\prime}=3951$ and computes $s=g^{d^{\prime}}=14413(\bmod p)$ and $t=d^{\prime-1}(m-d s)=$ $(3951)^{-1}(23456-72135 \times 14413)=17515(\bmod p-1)$.

ElGamal signature (contd.)

- Correctness: $H(m)=d H(s)+t d^{\prime}(\bmod p-1)$. So $a_{1}=g^{H(m)}=\left(g^{d}\right)^{H(s)}\left(g^{d^{\prime}}\right)^{t}=y^{H(s)} s^{t}=a_{2}(\bmod p)$.
- Example:
- Take $p=104729$ and $g=89$. The signer chooses the private exponent $d=72135$ and so $y=g^{d}=98771(\bmod p)$.
- Let $m=23456$ be the message to be signed. The signer chooses the session exponent $d^{\prime}=3951$ and computes $s=g^{d^{\prime}}=14413(\bmod p)$ and $t=d^{\prime-1}(m-d s)=$ $(3951)^{-1}(23456-72135 \times 14413)=17515(\bmod p-1)$.
- Verification involves computation of
$a_{1}=g^{m}=29201(\bmod p)$ and
$a_{2}=y^{s} s^{t}=(98771)^{14413} \times(14413)^{17515}=29201(\bmod p)$.
Since $a_{1}=a_{2}$, the signature is verified.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

ElGamal signature (contd.)

Cryptographic primitives

ElGamal signature (contd.)

- Forging: A forger chooses $d^{\prime}=3951$ and computes $s=g^{d^{\prime}}=14413(\bmod p)$. But computation of t involves d which is unknown to the forger. So the forger randomly selects $t=81529$. Verification of this forged signature gives $a_{1}=g^{m}=29201(\bmod p)$ as above. But $a_{2}=y^{s} s^{t}=(98771)^{14413} \times(14413)^{81529}=85885(\bmod p)$, that is, $a_{1} \neq a_{2}$ and the forged signature is not verified.

Cryptographic primitives

ElGamal signature (contd.)

- Forging: A forger chooses $d^{\prime}=3951$ and computes $s=g^{d^{\prime}}=14413(\bmod p)$. But computation of t involves d which is unknown to the forger. So the forger randomly selects $t=81529$. Verification of this forged signature gives $a_{1}=g^{m}=29201(\bmod p)$ as above. But $a_{2}=y^{s} s^{t}=(98771)^{14413} \times(14413)^{81529}=85885(\bmod p)$, that is, $a_{1} \neq a_{2}$ and the forged signature is not verified.
- Security:

ElGamal signature (contd.)

- Forging: A forger chooses $d^{\prime}=3951$ and computes $s=g^{d^{\prime}}=14413(\bmod p)$. But computation of t involves d which is unknown to the forger. So the forger randomly selects $t=81529$. Verification of this forged signature gives $a_{1}=g^{m}=29201(\bmod p)$ as above. But $a_{2}=y^{s} s^{t}=(98771)^{14413} \times(14413)^{81529}=85885(\bmod p)$, that is, $a_{1} \neq a_{2}$ and the forged signature is not verified.
- Security:
- Computation of s can be done by anybody. However, computation of t involves the signer's private exponent d. If the forger can solve the DLP modulo p, then d can be computed from the public-key y, and the correct signature can be generated.

ElGamal signature (contd.)

- Forging: A forger chooses $d^{\prime}=3951$ and computes $s=g^{d^{\prime}}=14413(\bmod p)$. But computation of t involves d which is unknown to the forger. So the forger randomly selects $t=81529$. Verification of this forged signature gives $a_{1}=g^{m}=29201(\bmod p)$ as above. But $a_{2}=y^{s} s^{t}=(98771)^{14413} \times(14413)^{81529}=85885(\bmod p)$, that is, $a_{1} \neq a_{2}$ and the forged signature is not verified.
- Security:
- Computation of s can be done by anybody. However, computation of t involves the signer's private exponent d. If the forger can solve the DLP modulo p, then d can be computed from the public-key y, and the correct signature can be generated.
- The prime p should be large (of bit-size $\geqslant 1024$) in order to preclude this attack.

Cryptographic primitives

Some other encryption algorithms

Encryption algorithm
Rabin encryption
Goldwasser-Micali encryption
Blum-Goldwasser encryption Chor-Rivest encryption XTR
NTRU

Security depends on
Square-root problem
Quadratic residuosity problem
Square-root problem Subset sum problem DLP
Closest vector problem in lattices

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Some other digital signature algorithms

Signature algorithm
Rabin signature
Schnorr signature
Nyberg-Rueppel signature
Digital signature algorithm (DSA)
Elliptic curve version of DSA (ECDSA) XTR signature NTRUSign

Security depends on
Square-root problem
DLP
DLP
DLP
DLP in elliptic curves
DLP
Closest vector problem

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Blind signatures

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Blind signatures

A signer Bob signs a message m without knowing m. Blind signatures insure anonymity during electronic payment.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Blind signatures

A signer Bob signs a message m without knowing m. Blind signatures insure anonymity during electronic payment.

Chaum's blind RSA signature
Input: A message M generated by Alice.
Output: Bob's blind RSA signature on M. Steps:

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Blind signatures

A signer Bob signs a message m without knowing m. Blind signatures insure anonymity during electronic payment.

Chaum's blind RSA signature
Input: A message M generated by Alice.
Output: Bob's blind RSA signature on M. Steps:

- Alice gets Bob's public-key (n, e).

Blind signatures

A signer Bob signs a message m without knowing m. Blind signatures insure anonymity during electronic payment.

Chaum's blind RSA signature
Input: A message M generated by Alice.
Output: Bob's blind RSA signature on M. Steps:

- Alice gets Bob's public-key (n, e).
- Alice computes $m=H(M) \in \mathbb{Z}_{n}$.

Blind signatures

A signer Bob signs a message m without knowing m. Blind signatures insure anonymity during electronic payment.

Chaum's blind RSA signature

Input: A message M generated by Alice.
Output: Bob's blind RSA signature on M. Steps:

- Alice gets Bob's public-key (n, e).
- Alice computes $m=H(M) \in \mathbb{Z}_{n}$.
- Alice sends to Bob the masked message $m^{\prime}=\rho^{e} m(\bmod n)$ for a random ρ.

Blind signatures

A signer Bob signs a message m without knowing m. Blind signatures insure anonymity during electronic payment.

Chaum's blind RSA signature

Input: A message M generated by Alice.
Output: Bob's blind RSA signature on M. Steps:

- Alice gets Bob's public-key (n, e).
- Alice computes $m=H(M) \in \mathbb{Z}_{n}$.
- Alice sends to Bob the masked message $m^{\prime}=\rho^{e} m(\bmod n)$ for a random ρ.
- Bob sends the signature $\sigma=m^{\prime d}(\bmod n)$ back to Alice.

Blind signatures

A signer Bob signs a message m without knowing m. Blind signatures insure anonymity during electronic payment.

Chaum's blind RSA signature

Input: A message M generated by Alice.
Output: Bob's blind RSA signature on M. Steps:

- Alice gets Bob's public-key (n, e).
- Alice computes $m=H(M) \in \mathbb{Z}_{n}$.
- Alice sends to Bob the masked message $m^{\prime}=\rho^{e} m(\bmod n)$ for a random ρ.
- Bob sends the signature $\sigma=m^{\prime d}(\bmod n)$ back to Alice.
- Alice computes Bob's signature $s=\rho^{-1} \sigma(\bmod n)$ on M.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Correctness of Chaum's blind RSA signature

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Correctness of Chaum's blind RSA signature

- Assume that $\rho \in \mathbb{Z}_{n}^{*}$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Correctness of Chaum's blind RSA signature

- Assume that $\rho \in \mathbb{Z}_{n}^{*}$.
- Since ed $=1(\bmod \phi(n))$, we have $\sigma=m^{\prime d}=\left(\rho^{e} m\right)^{d}=\rho^{e d} m^{d}=\rho m^{d}(\bmod n)$.

Correctness of Chaum's blind RSA signature

- Assume that $\rho \in \mathbb{Z}_{n}^{*}$.
- Since ed $=1(\bmod \phi(n))$, we have $\sigma=m^{\prime d}=\left(\rho^{e} m\right)^{d}=\rho^{e d} m^{d}=\rho m^{d}(\bmod n)$.
- Therefore, $s=\rho^{-1} \sigma=m^{d}=H(M)^{d}(\bmod n)$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Undeniable signatures

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Undeniable signatures

- Active participation of the signer is necessary during verification.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Undeniable signatures

- Active participation of the signer is necessary during verification.
- A signer is not allowed to deny a legitimate signature made by him.

Cryptographic primitives

Undeniable signatures

- Active participation of the signer is necessary during verification.
- A signer is not allowed to deny a legitimate signature made by him.
- An undeniable signature comes with a denial or disavowal protocol that generates one of the following three outputs:

Signature verified
Signature forged
The signer is trying to deny his signature by not participating in the protocol properly.

Undeniable signatures

- Active participation of the signer is necessary during verification.
- A signer is not allowed to deny a legitimate signature made by him.
- An undeniable signature comes with a denial or disavowal protocol that generates one of the following three outputs:

Signature verified
Signature forged
The signer is trying to deny his signature by not participating in the protocol properly.

Examples

Chaum-van Antwerpen undeniable signature scheme RSA-based undeniable signature scheme

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Challenge-response authentication

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Challenge-response authentication

- Alice wants to prove to Bob her knowledge of the private key d in the key-pair (e, d).

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Challenge-response authentication

- Alice wants to prove to Bob her knowledge of the private key d in the key-pair (e, d).
- Bob generates a random bit string r and computes $w=H(r)$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Challenge-response authentication

- Alice wants to prove to Bob her knowledge of the private key d in the key-pair (e, d).
- Bob generates a random bit string r and computes $w=H(r)$.
- Bob reads Alice's public key e and computes $c=f_{e}(r, e)$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Challenge-response authentication

- Alice wants to prove to Bob her knowledge of the private key d in the key-pair (e, d).
- Bob generates a random bit string r and computes $w=H(r)$.
- Bob reads Alice's public key e and computes $c=f_{e}(r, e)$.
- Bob sends the challenge (w, c) to Alice.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

Challenge-response authentication

- Alice wants to prove to Bob her knowledge of the private key d in the key-pair (e, d).
- Bob generates a random bit string r and computes $w=H(r)$.
- Bob reads Alice's public key e and computes $c=f_{e}(r, e)$.
- Bob sends the challenge (w, c) to Alice.
- Alice computes $r^{\prime}=f_{d}(c, d)$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Challenge-response authentication

- Alice wants to prove to Bob her knowledge of the private key d in the key-pair (e, d).
- Bob generates a random bit string r and computes $w=H(r)$.
- Bob reads Alice's public key e and computes $c=f_{e}(r, e)$.
- Bob sends the challenge (w, c) to Alice.
- Alice computes $r^{\prime}=f_{d}(c, d)$.
- If $H\left(r^{\prime}\right) \neq w$, Alice quits the protocol.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Challenge-response authentication

- Alice wants to prove to Bob her knowledge of the private key d in the key-pair (e, d).
- Bob generates a random bit string r and computes $w=H(r)$.
- Bob reads Alice's public key e and computes $c=f_{e}(r, e)$.
- Bob sends the challenge (w, c) to Alice.
- Alice computes $r^{\prime}=f_{d}(c, d)$.
- If $H\left(r^{\prime}\right) \neq w$, Alice quits the protocol.
- Alice sends the response r^{\prime} to Bob.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Challenge-response authentication

- Alice wants to prove to Bob her knowledge of the private key d in the key-pair (e, d).
- Bob generates a random bit string r and computes $w=H(r)$.
- Bob reads Alice's public key e and computes $c=f_{e}(r, e)$.
- Bob sends the challenge (w, c) to Alice.
- Alice computes $r^{\prime}=f_{d}(c, d)$.
- If $H\left(r^{\prime}\right) \neq w$, Alice quits the protocol.
- Alice sends the response r^{\prime} to Bob.
- Bob accepts Alice's identity if and only if $r^{\prime}=r$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Challenge-response authentication (Correctness)

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems

Challenge-response authentication (Correctness)

- Bob checks whether Alice can correctly decrypt the challenge c.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Challenge-response authentication (Correctness)

- Bob checks whether Alice can correctly decrypt the challenge c.
- Bob sends w as a witness of his knowledge of r.

Cryptographic primitives

Challenge-response authentication (Correctness)

- Bob checks whether Alice can correctly decrypt the challenge c.
- Bob sends w as a witness of his knowledge of r.
- Before sending the decrypted plaintext r^{\prime}, Alice confirms that Bob actually knows the plaintext r.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

The Guillou-Quisquater (GQ) zero-knowledge protocol

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

The Guillou-Quisquater (GQ) zero-knowledge protocol

- Alice generates an RSA-based exponent-pair (e,d) under the modulus n.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

The Guillou-Quisquater (GQ) zero-knowledge protocol

- Alice generates an RSA-based exponent-pair (e,d) under the modulus n.
- Alice chooses a random $m \in \mathbb{Z}_{n}^{*}$ and computes $s=m^{-d}(\bmod n)$. Alice makes m public and keeps s secret. Alice tries to prove to Bob her knowledge of s.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

The Guillou-Quisquater (GQ) zero-knowledge protocol

- Alice generates an RSA-based exponent-pair (e,d) under the modulus n.
- Alice chooses a random $m \in \mathbb{Z}_{n}^{*}$ and computes $s=m^{-d}(\bmod n)$. Alice makes m public and keeps s secret. Alice tries to prove to Bob her knowledge of s.
- The protocol

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

The Guillou-Quisquater (GQ) zero-knowledge protocol

- Alice generates an RSA-based exponent-pair (e,d) under the modulus n.
- Alice chooses a random $m \in \mathbb{Z}_{n}^{*}$ and computes $s=m^{-d}(\bmod n)$. Alice makes m public and keeps s secret. Alice tries to prove to Bob her knowledge of s.
- The protocol

Alice selects a random $c \in \mathbb{Z}_{n}^{*}$.
[Commitment]

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

The Guillou-Quisquater (GQ) zero-knowledge protocol

- Alice generates an RSA-based exponent-pair (e,d) under the modulus n.
- Alice chooses a random $m \in \mathbb{Z}_{n}^{*}$ and computes $s=m^{-d}(\bmod n)$. Alice makes m public and keeps s secret. Alice tries to prove to Bob her knowledge of s.
- The protocol

Alice selects a random $c \in \mathbb{Z}_{n}^{*}$.
Alice sends to Bob $w=c^{e}(\bmod n)$.
[Commitment]
[Witness]

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

The Guillou-Quisquater (GQ) zero-knowledge protocol

- Alice generates an RSA-based exponent-pair (e,d) under the modulus n.
- Alice chooses a random $m \in \mathbb{Z}_{n}^{*}$ and computes $s=m^{-d}(\bmod n)$. Alice makes m public and keeps s secret. Alice tries to prove to Bob her knowledge of s.
- The protocol

Alice selects a random $c \in \mathbb{Z}_{n}^{*}$.
Alice sends to Bob $w=c^{e}(\bmod n)$.
[Commitment]
[Witness]
Bob sends to Alice a random $\epsilon \in\{1,2, \ldots, e\}$. [Challenge]

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

The Guillou-Quisquater (GQ) zero-knowledge protocol

- Alice generates an RSA-based exponent-pair (e, d) under the modulus n.
- Alice chooses a random $m \in \mathbb{Z}_{n}^{*}$ and computes $s=m^{-d}(\bmod n)$. Alice makes m public and keeps s secret. Alice tries to prove to Bob her knowledge of s.
- The protocol

Alice selects a random $c \in \mathbb{Z}_{n}^{*}$.
Alice sends to Bob $w=c^{e}(\bmod n)$.
Bob sends to Alice a random $\epsilon \in\{1,2, \ldots, e\}$. Alice sends to Bob $r=c s^{\epsilon}(\bmod n)$.
[Commitment]
[Witness] [Challenge] [Response]

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

The Guillou-Quisquater (GQ) zero-knowledge protocol

- Alice generates an RSA-based exponent-pair (e, d) under the modulus n.
- Alice chooses a random $m \in \mathbb{Z}_{n}^{*}$ and computes $s=m^{-d}(\bmod n)$. Alice makes m public and keeps s secret. Alice tries to prove to Bob her knowledge of s.
- The protocol

Alice selects a random $c \in \mathbb{Z}_{n}^{*}$.
Alice sends to Bob $w=c^{e}(\bmod n)$.
Bob sends to Alice a random $\epsilon \in\{1,2, \ldots, e\}$. Alice sends to Bob $r=c s^{\epsilon}(\bmod n)$.
[Commitment]
[Witness] Bob computes $w^{\prime}=m^{\epsilon} r^{e}(\bmod n)$.

RSA cryptosystems

The Guillou-Quisquater (GQ) zero-knowledge protocol

- Alice generates an RSA-based exponent-pair (e, d) under the modulus n.
- Alice chooses a random $m \in \mathbb{Z}_{n}^{*}$ and computes $s=m^{-d}(\bmod n)$. Alice makes m public and keeps s secret. Alice tries to prove to Bob her knowledge of s.
- The protocol

Alice selects a random $c \in \mathbb{Z}_{n}^{*}$.
Alice sends to Bob $w=c^{e}(\bmod n)$.
[Commitment]
[Witness]
Bob sends to Alice a random $\epsilon \in\{1,2, \ldots, e\}$. Alice sends to Bob $r=c s^{\epsilon}(\bmod n)$.
[Challenge] [Response]

Bob computes $w^{\prime}=m^{\epsilon} r^{e}(\bmod n)$.
Bob accepts Alice's identity if and only if $w^{\prime} \neq 0$ and $w^{\prime}=w$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

The GQ protocol (contd.)

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

The GQ protocol (contd.)

- Correctness

$$
w^{\prime}=m^{\epsilon} r^{e}=m^{\epsilon}\left(c s^{\epsilon}\right)^{e}=m^{\epsilon}\left(c m^{-d \epsilon}\right)^{e}=\left(m^{1-e d}\right)^{\epsilon} c^{e}=c^{e}=
$$ $w(\bmod n)$.

The GQ protocol (contd.)

- Correctness

$$
w^{\prime}=m^{\epsilon} r^{e}=m^{\epsilon}\left(c s^{\epsilon}\right)^{e}=m^{\epsilon}\left(c m^{-d \epsilon}\right)^{e}=\left(m^{1-e d}\right)^{\epsilon} c^{e}=c^{e}=
$$ $w(\bmod n)$.

- Security

The GQ protocol (contd.)

- Correctness
$w^{\prime}=m^{\epsilon} r^{e}=m^{\epsilon}\left(c s^{\epsilon}\right)^{e}=m^{\epsilon}\left(c m^{-d \epsilon}\right)^{e}=\left(m^{1-e d}\right)^{\epsilon} c^{e}=c^{e}=$ $w(\bmod n)$.
- Security
- The quantity s^{ϵ} is blinded by the random commitment c.

The GQ protocol (contd.)

- Correctness
$w^{\prime}=m^{\epsilon} r^{e}=m^{\epsilon}\left(c s^{\epsilon}\right)^{e}=m^{\epsilon}\left(c m^{-d \epsilon}\right)^{e}=\left(m^{1-e d}\right)^{\epsilon} c^{e}=c^{e}=$ $w(\bmod n)$.
- Security
- The quantity s^{ϵ} is blinded by the random commitment c.
- As a witness for c, Alice presents its encrypted version w.

The GQ protocol (contd.)

- Correctness
$w^{\prime}=m^{\epsilon} r^{e}=m^{\epsilon}\left(c s^{\epsilon}\right)^{e}=m^{\epsilon}\left(c m^{-d \epsilon}\right)^{e}=\left(m^{1-e d}\right)^{\epsilon} c^{e}=c^{e}=$ $w(\bmod n)$.
- Security
- The quantity s^{ϵ} is blinded by the random commitment c.
- As a witness for c, Alice presents its encrypted version w.
- Bob (or an eavesdropper) cannot decrypt w to compute c and subsequently \mathbf{s}^{ϵ}.

The GQ protocol (contd.)

- Correctness

$$
w^{\prime}=m^{\epsilon} r^{e}=m^{\epsilon}\left(c s^{\epsilon}\right)^{e}=m^{\epsilon}\left(c m^{-d \epsilon}\right)^{e}=\left(m^{1-e d}\right)^{\epsilon} c^{e}=c^{e}=
$$

$$
w(\bmod n)
$$

- Security
- The quantity s^{ϵ} is blinded by the random commitment c.
- As a witness for c, Alice presents its encrypted version w.
- Bob (or an eavesdropper) cannot decrypt w to compute c and subsequently s^{ϵ}.
- An eavesdropper's guess about ϵ is successful with probability $1 / e$.

The GQ protocol (contd.)

- Correctness

$$
w^{\prime}=m^{\epsilon} r^{e}=m^{\epsilon}\left(c s^{\epsilon}\right)^{e}=m^{\epsilon}\left(c m^{-d \epsilon}\right)^{e}=\left(m^{1-e d}\right)^{\epsilon} c^{e}=c^{e}=
$$

$$
w(\bmod n)
$$

- Security
- The quantity s^{ϵ} is blinded by the random commitment c.
- As a witness for c, Alice presents its encrypted version w.
- Bob (or an eavesdropper) cannot decrypt w to compute c and subsequently s^{ϵ}.
- An eavesdropper's guess about ϵ is successful with probability $1 / e$.
- The check $w^{\prime} \neq 0$ precludes the case $c=0$ which lets a claimant succeed always.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Digital certificates: Introduction

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Digital certificates: Introduction

- Bind public-keys to entities.

Digital certificates: Introduction

- Bind public-keys to entities.
- Required to establish the authenticity of public keys.

Digital certificates: Introduction

- Bind public-keys to entities.
- Required to establish the authenticity of public keys.
- Guard against malicious public keys.

Digital certificates: Introduction

- Bind public-keys to entities.
- Required to establish the authenticity of public keys.
- Guard against malicious public keys.
- Promote confidence in using others' public keys.

Cryptographic primitives

Digital certificates: Introduction

- Bind public-keys to entities.
- Required to establish the authenticity of public keys.
- Guard against malicious public keys.
- Promote confidence in using others' public keys.
- Require a Certification Authority (CA) whom every entity over a network can believe. Typically, a government organization or a reputed company can be a CA.

Cryptographic primitives

Digital certificates: Introduction

- Bind public-keys to entities.
- Required to establish the authenticity of public keys.
- Guard against malicious public keys.
- Promote confidence in using others' public keys.
- Require a Certification Authority (CA) whom every entity over a network can believe. Typically, a government organization or a reputed company can be a CA.
- In case a certificate is compromised, one requires to revoke it.

Digital certificates: Introduction

- Bind public-keys to entities.
- Required to establish the authenticity of public keys.
- Guard against malicious public keys.
- Promote confidence in using others' public keys.
- Require a Certification Authority (CA) whom every entity over a network can believe. Typically, a government organization or a reputed company can be a CA.
- In case a certificate is compromised, one requires to revoke it.
- A revoked certificate cannot be used to establish the authenticity of a public key.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Digital certificates: Contents

Digital certificates: Contents

- A digital certificate contains particulars about the entity whose public key is to be embedded in the certificate:
- Name, address and other personal details of the entity.
- The public key of the entity. The key pair may be generated by either the entity or the CA. If the CA generates the key pair, then the private key is handed over to the entity by trusted couriers.
The certificate is digitally signed by the private key of the CA.

Digital certificates: Contents

- A digital certificate contains particulars about the entity whose public key is to be embedded in the certificate:
- Name, address and other personal details of the entity.
- The public key of the entity. The key pair may be generated by either the entity or the CA. If the CA generates the key pair, then the private key is handed over to the entity by trusted couriers.
The certificate is digitally signed by the private key of the CA.
- If signatures cannot be forged, nobody other than the CA can generate a valid certificate for an entity.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

RSA cryptosystems
Diffie-Hellman cryptosystems
ElGamal cryptosystems
Miscellaneous cryptosystems

Digital certificates: Revocation

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Digital certificates: Revocation

- A certificate may become invalid due to several reasons:

Expiry of the certificate
Possible or suspected compromise of the entity's private key Detection of malicious activities of the owner of the certificate

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Digital certificates: Revocation

- A certificate may become invalid due to several reasons:

Expiry of the certificate
Possible or suspected compromise of the entity's private key Detection of malicious activities of the owner of the certificate

- An invalid certificate is revoked by the CA.

Cryptographic primitives Symmetric cryptosystems

Digital certificates: Revocation

- A certificate may become invalid due to several reasons:

Expiry of the certificate
Possible or suspected compromise of the entity's private key
Detection of malicious activities of the owner of the certificate

- An invalid certificate is revoked by the CA.
- Certificate Revocation List (CRL): The CA maintains a list of revoked certificates.

Digital certificates: Revocation

- A certificate may become invalid due to several reasons:

Expiry of the certificate
Possible or suspected compromise of the entity's private key
Detection of malicious activities of the owner of the certificate

- An invalid certificate is revoked by the CA.
- Certificate Revocation List (CRL): The CA maintains a list of revoked certificates.
- If Alice wants to use Bob's public key, she obtains the certificate for Bob's public key. If the CA's signature is verified on this certificate and if the certificate is not found in the CRL, then Alice gains the desired confidence to use Bob's public key.

Part IV: Public-key cryptanalysis

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Integer factoring algorithms

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Integer factoring algorithms

Let n be the integer to be factored.

Integer factoring algorithms

Let n be the integer to be factored.

Older algorithms

- Trial division (efficient if all prime divisors of n are small)
- Pollard's rho method
- Pollard's $p-1$ method (efficient if $p-1$ has only small prime factors for some prime divisor p of n)
- Williams' $p+1$ method (efficient if $p+1$ has only small prime factors for some prime divisor p of n)

Integer factoring algorithms

Let n be the integer to be factored.
Older algorithms

- Trial division (efficient if all prime divisors of n are small)
- Pollard's rho method
- Pollard's $p-1$ method (efficient if $p-1$ has only small prime factors for some prime divisor p of n)
- Williams' $p+1$ method (efficient if $p+1$ has only small prime factors for some prime divisor p of n)

In the worst case these algorithms take exponential (in $\log n$) running time.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modern algorithms

Modern algorithms

Subexponential running time:

$L(n, \omega, c)=\exp \left[(c+o(1))(\ln n)^{\omega}(\ln \ln n)^{1-\omega}\right]$

Modern algorithms

Subexponential running time:

$L(n, \omega, c)=\exp \left[(c+o(1))(\ln n)^{\omega}(\ln \ln n)^{1-\omega}\right]$
$\omega=0 \quad: L(n, \omega, c)$ is polynomial in $\ln n$.

Modern algorithms

Subexponential running time:

$L(n, \omega, c)=\exp \left[(c+o(1))(\ln n)^{\omega}(\ln \ln n)^{1-\omega}\right]$
$\omega=0 \quad: L(n, \omega, c)$ is polynomial in In n.
$\omega=1 \quad: L(n, \omega, c)$ is exponential in $\operatorname{In} n$.

Modern algorithms

Subexponential running time:

$L(n, \omega, c)=\exp \left[(c+o(1))(\ln n)^{\omega}(\ln \ln n)^{1-\omega}\right]$
$\omega=0 \quad: L(n, \omega, c)$ is polynomial in $\ln n$.
$\omega=1 \quad: L(n, \omega, c)$ is exponential in $\ln n$.
$0<\omega<1: L(n, \omega, c)$ is between polynomial and exponential

Modern algorithms

Subexponential running time:

$L(n, \omega, c)=\exp \left[(c+o(1))(\ln n)^{\omega}(\ln \ln n)^{1-\omega}\right]$
$\omega=0 \quad: L(n, \omega, c)$ is polynomial in In n.
$\omega=1 \quad: L(n, \omega, c)$ is exponential in $\ln n$.
$0<\omega<1: L(n, \omega, c)$ is between polynomial and exponential

Algorithm	Inventor(s)	Running time
Continued fraction method (CFRAC)	Morrison \& Brillhart (1975)	$L(n, 1 / 2, c)$
Quadratic sieve method (QSM)	Pomerance (1984)	$L(n, 1 / 2,1)$
Cubic sieve method (CSM)	Reyneri	$L(n, 1 / 2,0.816)$
Elliptic curve method (ECM)	H. W. Lenstra (1987)	$L(n, 1 / 2, c)$
Number field sieve method (NFSM)	A. K. Lenstra, H. W. Lenstra, Manasse \& Pollard (1990)	$L(n, 1 / 3,1.923)$

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Fermat's factoring method

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Fermat's factoring method

Examples

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Fermat's factoring method

Examples

- Take $n=899$.
$n=900-1=30^{2}-1^{2}=(30-1) \times(30+1)=29 \times 31$.

Fermat's factoring method

Examples

- Take $n=899$.

$$
n=900-1=30^{2}-1^{2}=(30-1) \times(30+1)=29 \times 31
$$

- Take $n=833$. $3 \times 833=2500-1=50^{2}-1^{2}=(50-1) \times(50+1)=49 \times 51$. $\operatorname{gcd}(50-1,833)=49$ is a non-trivial factor of 833.

Fermat's factoring method

Examples

- Take $n=899$.

$$
n=900-1=30^{2}-1^{2}=(30-1) \times(30+1)=29 \times 31
$$

- Take $n=833$. $3 \times 833=2500-1=50^{2}-1^{2}=(50-1) \times(50+1)=49 \times 51$. $\operatorname{gcd}(50-1,833)=49$ is a non-trivial factor of 833.

Objective

To find integers $x, y \in \mathbb{Z}_{n}$ such that $x^{2}=y^{2}(\bmod n)$. Unless $x= \pm y(\bmod n), \operatorname{gcd}(x-y, n)$ is a non-trivial divisor of n.

Fermat's factoring method

Examples

- Take $n=899$.

$$
n=900-1=30^{2}-1^{2}=(30-1) \times(30+1)=29 \times 31
$$

- Take $n=833$. $3 \times 833=2500-1=50^{2}-1^{2}=(50-1) \times(50+1)=49 \times 51$. $\operatorname{gcd}(50-1,833)=49$ is a non-trivial factor of 833.

Objective

To find integers $x, y \in \mathbb{Z}_{n}$ such that $x^{2}=y^{2}(\bmod n)$. Unless $x= \pm y(\bmod n), \operatorname{gcd}(x-y, n)$ is a non-trivial divisor of n.

If n is composite (but not a prime power), then for a randomly chosen pair (x, y) with $x^{2}=y^{2}(\bmod n)$, the probability that $x \neq \pm y(\bmod n)$ is at least $1 / 2$.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems Public-key cryptanalysis

The Quadratic Sieve Method (QSM)

Let n be an odd integer with no small prime factors. $H=\lceil\sqrt{n}\rceil$ and $J=H^{2}-n$.

The Quadratic Sieve Method (QSM)

Let n be an odd integer with no small prime factors. $H=\lceil\sqrt{n}\rceil$ and $J=H^{2}-n$.
$(H+c)^{2}=J+2 H c+c^{2}(\bmod n)$ for small integers c. Call $T(c)=J+2 H c+c^{2}$.

The Quadratic Sieve Method (QSM)

Let n be an odd integer with no small prime factors.
$H=\lceil\sqrt{n}\rceil$ and $J=H^{2}-n$.
$(H+c)^{2}=J+2 H c+c^{2}(\bmod n)$ for small integers c.
Call $T(c)=J+2 H c+c^{2}$.
Suppose $T(c)$ factors over small primes $p_{1}, p_{2}, \ldots, p_{t}$:

$$
(H+c)^{2}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}(\bmod n) .
$$

This is called a relation.

The Quadratic Sieve Method (QSM)

Let n be an odd integer with no small prime factors.
$H=\lceil\sqrt{n}\rceil$ and $J=H^{2}-n$.
$(H+c)^{2}=J+2 H c+c^{2}(\bmod n)$ for small integers c.
Call $T(c)=J+2 H c+c^{2}$.
Suppose $T(c)$ factors over small primes $p_{1}, p_{2}, \ldots, p_{t}$:

$$
(H+c)^{2}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}(\bmod n) .
$$

This is called a relation.
The left side is already a square.
The right side is also a square if each α_{i} is even.
But this is very rare.

QSM (contd.)

Collect many relations:
Relation 1: $\left.\left(H+c_{1}\right)^{2}=p_{1}^{\alpha_{11}} p_{2}^{\alpha_{12}} \cdots p_{t}^{\alpha_{1 t}}\right)$
Relation 2: $\left(H+c_{2}\right)^{2}=p_{1}^{\alpha_{21}} p_{2}^{\alpha_{22}} \cdots p_{t}^{\alpha_{2 t}}$
$(\bmod n)$.
Relation $\left.r: \quad\left(H+c_{r}\right)^{2}=p_{1}^{\alpha_{r 1}} p_{2}^{\alpha_{r 2}} \cdots p_{t}^{\alpha_{r t}}\right\}$

QSM (contd.)

Collect many relations:
Relation 1: $\left.\left(H+c_{1}\right)^{2}=p_{1}^{\alpha_{11}} p_{2}^{\alpha_{12}} \cdots p_{t}^{\alpha_{1 t}}\right)$
Relation 2: $\left(H+c_{2}\right)^{2}=p_{1}^{\alpha_{21}} p_{2}^{\alpha_{22}} \cdots p_{t}^{\alpha_{2 t}}$
$(\bmod n)$.
Relation $r:\left(H+c_{r}\right)^{2}=p_{1}^{\alpha_{r 1}} p_{2}^{\alpha_{r 2}} \cdots p_{t}^{\alpha_{r t}}$
Let $\beta_{1}, \beta_{2}, \ldots, \beta_{r} \in\{0,1\}$.

$$
\left[\left(H+c_{1}\right)^{\beta_{1}}\left(H+c_{2}\right)^{\beta_{2}} \cdots\left(H+c_{r}\right)^{\beta_{r}}\right]^{2}=p_{1}^{\gamma_{1}} p_{2}^{\gamma_{2}} \cdots p_{t}^{\gamma_{t}}(\bmod n)
$$

QSM (contd.)

Collect many relations:
Relation 1: $\left(H+c_{1}\right)^{2}=p_{1}^{\alpha_{11}} p_{2}^{\alpha_{12}} \cdots p_{t}^{\alpha_{1 t}}$
Relation 2: $\left(H+c_{2}\right)^{2}=p_{1}^{\alpha_{21}} p_{2}^{\alpha_{22}} \cdots p_{t}^{\alpha_{2 t}}$
$(\bmod n)$.
Relation $r:\left(H+c_{r}\right)^{2}=p_{1}^{\alpha_{r 1}} p_{2}^{\alpha_{r 2}} \cdots p_{t}^{\alpha_{r t}}$
Let $\beta_{1}, \beta_{2}, \ldots, \beta_{r} \in\{0,1\}$.

$$
\left[\left(H+c_{1}\right)^{\beta_{1}}\left(H+c_{2}\right)^{\beta_{2}} \cdots\left(H+c_{r}\right)^{\beta_{r}}\right]^{2}=p_{1}^{\gamma_{1}} p_{2}^{\gamma_{2}} \cdots p_{t}^{\gamma_{t}}(\bmod n)
$$

The left side is already a square.
Tune $\beta_{1}, \beta_{2}, \ldots, \beta_{r}$ to make each γ_{i} even.

QSM (contd.)

$$
\begin{aligned}
& \alpha_{11} \beta_{1}+\alpha_{21} \beta_{2}+\cdots+\alpha_{r 1} \beta_{r}=\gamma_{1} \\
& \alpha_{12} \beta_{1}+\alpha_{22} \beta_{2}+\cdots+\alpha_{r 2} \beta_{r}=\gamma_{2} \\
& \cdots \\
& \alpha_{1 t} \beta_{1}+\alpha_{2 t} \beta_{2}+\cdots+\alpha_{r t} \beta_{r}=\gamma_{t} .
\end{aligned}
$$

QSM (contd.)

$$
\begin{aligned}
& \alpha_{11} \beta_{1}+\alpha_{21} \beta_{2}+\cdots+\alpha_{r 1} \beta_{r}=\gamma_{1} \\
& \alpha_{12} \beta_{1}+\alpha_{22} \beta_{2}+\cdots+\alpha_{r 2} \beta_{r}=\gamma_{2} \\
& \cdots \\
& \alpha_{1 t} \beta_{1}+\alpha_{2 t} \beta_{2}+\cdots+\alpha_{r t} \beta_{r}=\gamma_{t} .
\end{aligned}
$$

Linear system with t equations and r variables $\beta_{1}, \beta_{2}, \ldots, \beta_{r}$:

$$
\left(\begin{array}{cccc}
\alpha_{11} & \alpha_{21} & \cdots & \alpha_{r 1} \\
\alpha_{12} & \alpha_{22} & \cdots & \alpha_{r 2} \\
\vdots & \vdots & \cdots & \vdots \\
\alpha_{1 t} & \alpha_{2 t} & \cdots & \alpha_{r t}
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{t}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)(\bmod 2) .
$$

QSM (contd.)

For $r \geqslant t$, there are non-zero solutions for $\beta_{1}, \beta_{2}, \ldots, \beta_{r}$. Take

$$
\begin{aligned}
& x=\left(H+c_{1}\right)^{\beta_{1}}\left(H+c_{2}\right)^{\beta_{2}} \cdots\left(H+c_{r}\right)^{\beta_{r}}(\bmod n) \\
& y=p_{1}^{\gamma_{1} / 2} p_{2}^{\gamma_{2} / 2} \cdots p_{t}^{\gamma_{t} / 2}(\bmod n)
\end{aligned}
$$

If $x \neq \pm y(\bmod n)$, then $\operatorname{gcd}(x-y, n)$ is a non-trivial factor of n.

QSM (contd.)

For $r \geqslant t$, there are non-zero solutions for $\beta_{1}, \beta_{2}, \ldots, \beta_{r}$. Take

$$
\begin{aligned}
& x=\left(H+c_{1}\right)^{\beta_{1}}\left(H+c_{2}\right)^{\beta_{2}} \cdots\left(H+c_{r}\right)^{\beta_{r}}(\bmod n), \\
& y=p_{1}^{\gamma_{1} / 2} p_{2}^{\gamma_{2} / 2} \cdots p_{t}^{\gamma_{t} / 2}(\bmod n)
\end{aligned}
$$

If $x \neq \pm y(\bmod n)$, then $\operatorname{gcd}(x-y, n)$ is a non-trivial factor of n.
Let $p=p_{i}$ be a small prime.
$p \mid T(c)$ implies $(H+c)^{2}=n(\bmod p)$.
If n is not a quadratic residue modulo p, then $p \nmid T(c)$ for any c.
Consider only the small primes p modulo which n is a quadratic residue.

Example of QSM: Parameters

$n=7116491$.
$H=\lceil\sqrt{n}\rceil=2668$.
Take all primes <100 modulo which n is a square:

$$
B=\{2,5,7,17,29,31,41,59,61,67,71,79,97\}
$$

$t=13$.
Take $r=13$. (In practice, one takes $r \approx 2 t$.)

Example of QSM: Relations

Relation 1: $\quad(H+3)^{2}=2 \times 5^{3} \times 71$
Relation 2: $(H+8)^{2}=5 \times 7 \times 31 \times 41$
Relation 3: $(H+49)^{2}=2 \times 41^{2} \times 79$
Relation 4: $(H+64)^{2}=7 \times 29^{2} \times 59$
Relation 5: $\quad(H+81)^{2}=2 \times 5 \times 7^{2} \times 29 \times 31$
Relation 6: $(H+109)^{2}=2 \times 7 \times 17 \times 41 \times 61$
Relation 7: $(H+128)^{2}=5^{3} \times 71 \times 79$
Relation 8: $(H+145)^{2}=2 \times 71^{2} \times 79$
Relation 9: $(H+182)^{2}=17^{2} \times 59^{2}$
Relation 10: $(H+228)^{2}=5^{2} \times 7^{2} \times 17 \times 61$
Relation 11: $(H+267)^{2}=2 \times 7^{2} \times 17 \times 29 \times 31$
Relation 12: $(H+382)^{2}=7 \times 59 \times 67 \times 79$
Relation 13: $(H+411)^{2}=2 \times 5^{4} \times 31 \times 61$

Cryptographic primitives

Example of QSM: Linear System

$$
\left(\begin{array}{lllllllllllll}
1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
3 & 1 & 0 & 0 & 1 & 0 & 3 & 0 & 0 & 2 & 0 & 0 & 4 \\
0 & 1 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 2 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4} \\
\beta_{5} \\
\beta_{6} \\
\beta_{7} \\
\beta_{8} \\
\beta_{9} \\
\beta_{10} \\
\beta_{11} \\
\beta_{12} \\
\beta_{13}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)(\bmod 2) .
$$

Example of QSM: Solution of Relations

$\left(\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{13}\right)$	x	y	$\operatorname{gcd}(x-y, n)$
$(0,0,0,0,0,0,0,0,0,0,0,0,0)$	1	1	7116491
$(1,0,1,0,0,0,1,0,0,0,0,0,0)$	1755331	560322	1847
$(0,0,1,0,0,0,0,1,0,0,0,0,0)$	526430	459938	1847
$(1,0,0,0,0,0,1,1,0,0,0,0,0)$	7045367	7045367	7116491
$(0,0,0,0,0,0,0,0,1,0,0,0,0)$	2850	1003	1847
$(1,0,1,0,0,0,1,0,1,0,0,0,0)$	6916668	6916668	7116491
$(0,0,1,0,0,0,0,1,1,0,0,0,0)$	5862390	5862390	7116491
$(1,0,0,0,0,0,1,1,1,0,0,0,0)$	3674839	6944029	1847
$(0,1,0,0,1,1,0,0,0,0,1,0,1)$	1079130	3965027	3853
$(1,1,1,0,1,1,1,0,0,0,1,0,1)$	5466596	1649895	1
$(0,1,1,0,1,1,0,1,0,0,1,0,1)$	5395334	1721157	1
$(1,1,0,0,1,1,1,1,0,0,1,0,1)$	6429806	3725000	3853
$(0,1,0,0,1,1,0,0,1,0,1,0,1)$	1196388	5920103	1
$(1,1,1,0,1,1,1,0,1,0,1,0,1)$	1799801	3818773	3853
$(0,1,1,0,1,1,0,1,1,0,1,0,1)$	5081340	4129649	3853
$(1,1,0,0,1,1,1,1,1,0,1,0,1)$	7099266	17225	1

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Integer factoring
Discrete logarithms
Side channel attacks
Backdoor attacks

Algorithms for computing discrete logarithms

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Algorithms for computing discrete logarithms

To compute the discrete logarithm of a in \mathbb{Z}_{p}^{*} to the primitive base g

Cryptographic primitives

Algorithms for computing discrete logarithms

To compute the discrete logarithm of a in \mathbb{Z}_{p}^{*} to the primitive base g

Older algorithms

- Brute-force search
- Shanks' Baby-step-giant-step method
- Pollard's rho method
- Pollard's lambda method
- Pohlig-Hellman method (Efficient if $p-1$ has only small prime divisors)

Cryptographic primitives

Algorithms for computing discrete logarithms

To compute the discrete logarithm of a in \mathbb{Z}_{p}^{*} to the primitive base g

Older algorithms

- Brute-force search
- Shanks' Baby-step-giant-step method
- Pollard's rho method
- Pollard's lambda method
- Pohlig-Hellman method (Efficient if $p-1$ has only small prime divisors)

Worst-case complexity: Exponential in $\log p$

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modern algorithms

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Modern algorithms

Based on the index calculus method (ICM)

Modern algorithms

Based on the index calculus method (ICM)
Subexponential running time: $L(p, \omega, c)=\exp \left[(c+o(1))(\ln p)^{\omega}(\ln \ln p)^{1-\omega}\right]$.

Modern algorithms

Based on the index calculus method (ICM)
Subexponential running time:
$L(p, \omega, c)=\exp \left[(c+o(1))(\ln p)^{\omega}(\ln \ln p)^{1-\omega}\right]$.

Algorithm	Inventor(s)	Running time
Basic ICM	Western \& Miller (1968)	$L(p, 1 / 2, c)$
Linear sieve method (LSM) Residue list sieve method Gaussian integer method	Coppersmith, Odlyzko	
\& Schroeppel (1986)	$L(p, 1 / 2,1)$	
Numbic sieve method (CSM) (NFSM)	Reyneri	$L(p, 1 / 2,0.816)$

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Integer factoring
Discrete logarithms
Side channel attacks
Backdoor attacks

The basic index calculus method: Precomputation

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

The basic index calculus method: Precomputation

Factor base: First t primes $B=\left\{p_{1}, p_{2}, \ldots, p_{t}\right\}$

The basic index calculus method: Precomputation

Factor base: First t primes $B=\left\{p_{1}, p_{2}, \ldots, p_{t}\right\}$
To compute $d_{i}=\operatorname{ind}_{g} p_{i}$ for $i=1,2, \ldots, t$

The basic index calculus method: Precomputation

Factor base: First t primes $B=\left\{p_{1}, p_{2}, \ldots, p_{t}\right\}$
To compute $d_{i}=\operatorname{ind}_{g} p_{i}$ for $i=1,2, \ldots, t$
For random $j \in\{1,2, \ldots, p-2\}$, try to factor $g^{j}(\bmod p)$ over B.

The basic index calculus method: Precomputation

Factor base: First t primes $B=\left\{p_{1}, p_{2}, \ldots, p_{t}\right\}$
To compute $d_{i}=\operatorname{ind}_{g} p_{i}$ for $i=1,2, \ldots, t$
For random $j \in\{1,2, \ldots, p-2\}$, try to factor $g^{j}(\bmod p)$ over B.
Relation: $g^{j}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}(\bmod p)$

The basic index calculus method: Precomputation

Factor base: First t primes $B=\left\{p_{1}, p_{2}, \ldots, p_{t}\right\}$
To compute $d_{i}=\operatorname{ind}_{g} p_{i}$ for $i=1,2, \ldots, t$
For random $j \in\{1,2, \ldots, p-2\}$, try to factor $g^{j}(\bmod p)$ over B.
Relation: $g^{j}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}(\bmod p)$
Linear equation in t variables $d_{1}, d_{2}, \ldots, d_{t}$:

$$
j=\alpha_{1} d_{1}+\alpha_{2} d_{2}+\cdots+\alpha_{t} d_{t}(\bmod p-1)
$$

The basic ICM: Precomputation (contd.)

Generate $r \geqslant t$ relations for different values of j :
Relation 1: $j_{1}=\alpha_{11} d_{1}+\alpha_{12} d_{2}+\cdots+\alpha_{1 t} d_{t}$
Relation 2: $j_{2}=\alpha_{21} d_{1}+\alpha_{22} d_{2}+\cdots+\alpha_{2 t} d_{t}$

$$
(\bmod p-1)
$$

Relation $\left.r: \quad j_{r}=\alpha_{r 1} d_{1}+\alpha_{r 2} d_{2}+\cdots+\alpha_{r t} d_{t}\right\}$

The basic ICM: Precomputation (contd.)

Generate $r \geqslant t$ relations for different values of j :
Relation 1: $j_{1}=\alpha_{11} d_{1}+\alpha_{12} d_{2}+\cdots+\alpha_{1 t} d_{t}$
Relation 2: $j_{2}=\alpha_{21} d_{1}+\alpha_{22} d_{2}+\cdots+\alpha_{2 t} d_{t}$

$$
(\bmod p-1)
$$

Relation $\left.r: \quad j_{r}=\alpha_{r 1} d_{1}+\alpha_{r 2} d_{2}+\cdots+\alpha_{r t} d_{t}\right\}$
Solve the system modulo $p-1$ to determine $d_{1}, d_{2}, \ldots, d_{t}$.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Integer factoring
Discrete logarithms
Side channel attacks
Backdoor attacks

The basic ICM: Second stage

The basic ICM: Second stage

Choose random $j \in\{1,2, \ldots, p-2\}$. Try to factor $a g^{j}(\bmod p)$ over B.

The basic ICM: Second stage

Choose random $j \in\{1,2, \ldots, p-2\}$. Try to factor $a g^{j}(\bmod p)$ over B.

A successful factorization gives:

$$
a g^{j}=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}(\bmod p)
$$

The basic ICM: Second stage

Choose random $j \in\{1,2, \ldots, p-2\}$.
Try to factor $a g^{j}(\bmod p)$ over B.
A successful factorization gives:

$$
a g^{j}=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}(\bmod p) .
$$

Take discrete log:

$$
\operatorname{ind}_{g} a=-j+\beta_{1} d_{1}+\beta_{2} d_{2}+\cdots+\beta_{t} d_{t}(\bmod p-1) .
$$

The basic ICM: Second stage

Choose random $j \in\{1,2, \ldots, p-2\}$.
Try to factor $a g^{j}(\bmod p)$ over B.
A successful factorization gives:

$$
a g^{j}=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}(\bmod p) .
$$

Take discrete log:

$$
\operatorname{ind}_{g} a=-j+\beta_{1} d_{1}+\beta_{2} d_{2}+\cdots+\beta_{t} d_{t}(\bmod p-1) .
$$

Substitute the values of $d_{1}, d_{2}, \ldots, d_{t}$ to get ind_{g} a.

The basic ICM: Example (Precomputation)

Paramaters: $p=839, g=31, B=\{2,3,5,7,11\}, t=5, r=10$.

The basic ICM: Example (Precomputation)

Paramaters: $p=839, g=31, B=\{2,3,5,7,11\}, t=5, r=10$.
Relations
Relation 1: $\quad g^{118}=2^{3} \times 5^{2}$
Relation 2: $\quad g^{574}=2^{7} \times 5$
Relation 3: $\quad g^{318}=2^{2} \times 3^{3}$
Relation 4: $\quad g^{46}=2^{7}$
Relation 5: $g^{786}=2^{2} \times 3^{3} \times 7$
Relation 6: $g^{323}=2 \times 3 \times 11$
$(\bmod p)$.
Relation 7: $\quad g^{606}=3^{4}$
Relation 8: $\quad g^{252}=2^{3} \times 3^{2} \times 7$
Relation 9: $g^{160}=3 \times 5^{2}$
Relation 10: $g^{600}=2 \times 3^{3} \times 5$

The basic ICM: Example (Precomputation)

$$
\left(\begin{array}{lllll}
3 & 0 & 2 & 0 & 0 \\
7 & 0 & 1 & 0 & 0 \\
2 & 3 & 0 & 0 & 0 \\
7 & 0 & 0 & 0 & 0 \\
2 & 3 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 4 & 0 & 0 & 0 \\
3 & 2 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 & 0 \\
1 & 3 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3} \\
d_{4} \\
d_{5}
\end{array}\right)=\left(\begin{array}{c}
118 \\
574 \\
318 \\
46 \\
786 \\
323 \\
606 \\
252 \\
160 \\
600
\end{array}\right)(\bmod p-1) .
$$

The basic ICM: Example (Precomputation)

The coefficient matrix has full column rank (5) modulo $p-1=838$.

The basic ICM: Example (Precomputation)

The coefficient matrix has full column rank (5) modulo $p-1=838$.

The solution is unique.

The basic ICM: Example (Precomputation)

The coefficient matrix has full column rank (5) modulo $p-1=838$.

The solution is unique.

Cryptographic primitives Symmetric cryptosystems
Public-key cryptosystems
Public-key cryptanalysis

Integer factoring
Discrete logarithms
Side channel attacks
Backdoor attacks

The basic ICM: Example (Second Stage)

The basic ICM: Example (Second Stage)

Take $a=561$.

$$
a g^{312}=600=2^{3} \times 3 \times 5^{2}(\bmod p), \quad \text { that is },
$$ $\operatorname{ind}_{31} 561=-312+3 \times 246+780+2 \times 528=586(\bmod p-1)$.

The basic ICM: Example (Second Stage)

Take $a=561$.

$$
a g^{312}=600=2^{3} \times 3 \times 5^{2}(\bmod p), \quad \text { that is },
$$ $\operatorname{ind}_{31} 561=-312+3 \times 246+780+2 \times 528=586(\bmod p-1)$.

Take $a=89$.

$$
\begin{aligned}
a g^{342} & =99=3^{2} \times 11(\bmod p), \quad \text { that is, } \\
\operatorname{ind}_{31} 89 & =-342+2 \times 780+135=515(\bmod p-1) .
\end{aligned}
$$

The basic ICM: Example (Second Stage)

Take $a=561$.

$$
a g^{312}=600=2^{3} \times 3 \times 5^{2}(\bmod p), \quad \text { that is, }
$$ $\operatorname{ind}_{31} 561=-312+3 \times 246+780+2 \times 528=586(\bmod p-1)$.

Take $a=89$.

$$
\begin{aligned}
a g^{342} & =99=3^{2} \times 11(\bmod p), \quad \text { that is, } \\
\operatorname{ind}_{31} 89 & =-342+2 \times 780+135=515(\bmod p-1) .
\end{aligned}
$$

Take $a=625$.

$$
\begin{aligned}
a g^{806} & =70=2 \times 5 \times 7(\bmod p), \quad \text { that is, } \\
\operatorname{ind}_{31} 625 & =-806+246+528+468=436(\bmod p-1) .
\end{aligned}
$$

Side channel attacks

Side channel attacks

Applicable for both symmetric and asymmetric cryptosystems.

Cryptographic primitives

Side channel attacks

Applicable for both symmetric and asymmetric cryptosystems. Relevant for smart-card based implementations.

Cryptographic primitives

Side channel attacks

Applicable for both symmetric and asymmetric cryptosystems. Relevant for smart-card based implementations.
Reveal secret key by observing the decrypting/signing device.

Cryptographic primitives

Side channel attacks

Applicable for both symmetric and asymmetric cryptosystems. Relevant for smart-card based implementations.
Reveal secret key by observing the decrypting/signing device.

- Timing attack: utilizes reasonably accurate measurement of several private-key operations under the same key.

Cryptographic primitives

Side channel attacks

Applicable for both symmetric and asymmetric cryptosystems. Relevant for smart-card based implementations.
Reveal secret key by observing the decrypting/signing device.

- Timing attack: utilizes reasonably accurate measurement of several private-key operations under the same key.
- Power attack: analyzes power consumption patterns of the decrypting device during one or more private-key operations.

Side channel attacks

Applicable for both symmetric and asymmetric cryptosystems. Relevant for smart-card based implementations.
Reveal secret key by observing the decrypting/signing device.

- Timing attack: utilizes reasonably accurate measurement of several private-key operations under the same key.
- Power attack: analyzes power consumption patterns of the decrypting device during one or more private-key operations.
- Fault attack: Random hardware faults during the private-key operation may reveal the key to an attacker. Even a single faulty computation may suffice.

Side channel attacks

Applicable for both symmetric and asymmetric cryptosystems. Relevant for smart-card based implementations.
Reveal secret key by observing the decrypting/signing device.

- Timing attack: utilizes reasonably accurate measurement of several private-key operations under the same key.
- Power attack: analyzes power consumption patterns of the decrypting device during one or more private-key operations.
- Fault attack: Random hardware faults during the private-key operation may reveal the key to an attacker. Even a single faulty computation may suffice.

Remedies: Shield the decrypting device from external measurements, recheck computations, add random delays.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Backdoor attacks

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Backdoor attacks

Suggested mostly for public-key cryptosystems.

Cryptographic primitives

Backdoor attacks

Suggested mostly for public-key cryptosystems.
The designer supplies a malicious key generation routine, so that published public keys reveal the corresponding private keys to the designer.

Cryptographic primitives

Backdoor attacks

Suggested mostly for public-key cryptosystems.
The designer supplies a malicious key generation routine, so that published public keys reveal the corresponding private keys to the designer.

A good backdoor allows only the designer to steal keys.

Cryptographic primitives

Backdoor attacks

Suggested mostly for public-key cryptosystems.
The designer supplies a malicious key generation routine, so that published public keys reveal the corresponding private keys to the designer.

A good backdoor allows only the designer to steal keys.
Some backdoor attacks on RSA:
Hiding prime factor
Hiding small private exponent
Hiding small public exponent

Backdoor attacks

Suggested mostly for public-key cryptosystems.
The designer supplies a malicious key generation routine, so that published public keys reveal the corresponding private keys to the designer.

A good backdoor allows only the designer to steal keys.
Some backdoor attacks on RSA:
Hiding prime factor
Hiding small private exponent
Hiding small public exponent
Backdoor attacks on ElGamal and Diffie-Hellman systems are also known.

Backdoor attacks

Suggested mostly for public-key cryptosystems.
The designer supplies a malicious key generation routine, so that published public keys reveal the corresponding private keys to the designer.

A good backdoor allows only the designer to steal keys.
Some backdoor attacks on RSA:
Hiding prime factor
Hiding small private exponent
Hiding small public exponent
Backdoor attacks on ElGamal and Diffie-Hellman systems are also known.

Remedy: Use trustworthy (like open-source) software.

Cryptographic primitives Symmetric cryptosystems Public-key cryptosystems Public-key cryptanalysis

Integer factoring
Discrete logarithms
Side channel attacks
Backdoor attacks

Proving security of a cryptosystem

Cryptographic primitives

Proving security of a cryptosystem

With our current knowledge, we cannot prove a practical system to be secure.

Cryptographic primitives

Proving security of a cryptosystem

With our current knowledge, we cannot prove a practical system to be secure.

A standard security review, even by competent cryptographers, can only prove insecurity; it can never prove security. By following the pack you can leverage the cryptanalytic expertise of the worldwide community, not just a handful of hours of a consultant's time.

- Bruce Schneier, Crypto-gram, March 15, 1999

Cryptographic primitives

Proving security of a cryptosystem

With our current knowledge, we cannot prove a practical system to be secure.

A standard security review, even by competent cryptographers, can only prove insecurity; it can never prove security. By following the pack you can leverage the cryptanalytic expertise of the worldwide community, not just a handful of hours of a consultant's time.

- Bruce Schneier, Crypto-gram, March 15, 1999

Desirable attributes for a strong cryptosystem:

Proving security of a cryptosystem

With our current knowledge, we cannot prove a practical system to be secure.

A standard security review, even by competent cryptographers, can only prove insecurity; it can never prove security. By following the pack you can leverage the cryptanalytic expertise of the worldwide community, not just a handful of hours of a consultant's time.

- Bruce Schneier, Crypto-gram, March 15, 1999

Desirable attributes for a strong cryptosystem:
Use of good non-linearity (diffusion)

Proving security of a cryptosystem

With our current knowledge, we cannot prove a practical system to be secure.

A standard security review, even by competent cryptographers, can only prove insecurity; it can never prove security. By following the pack you can leverage the cryptanalytic expertise of the worldwide community, not just a handful of hours of a consultant's time.

- Bruce Schneier, Crypto-gram, March 15, 1999

Desirable attributes for a strong cryptosystem:
Use of good non-linearity (diffusion)
Resilience against known attacks

Proving security of a cryptosystem

With our current knowledge, we cannot prove a practical system to be secure.

A standard security review, even by competent cryptographers, can only prove insecurity; it can never prove security. By following the pack you can leverage the cryptanalytic expertise of the worldwide community, not just a handful of hours of a consultant's time.

- Bruce Schneier, Crypto-gram, March 15, 1999

Desirable attributes for a strong cryptosystem:
Use of good non-linearity (diffusion)
Resilience against known attacks
Computational equivalence with difficult problems

Selected references

[1] A. Das and C. E. Veni Madhavan, Public-key Cryptography: Theory and Practice, Pearson Education, 2009.
[2] A. J. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography, Chapman \& Hall/CRC, 1997.
[3] W. Stallings, Cryptography and Network Security: Principles and Practice, third edition, Prentice Hall, 2003.
[4] D. Stinson, Cryptography: Theory and Practice, third edition, Chapman \& Hall/CRC, 2006.
[5] J. Buchmann, Introduction to Cryptography, second edition, Springer, 2004.
[6] B. Schneier, Applied Cryptography, second edition, John Wiley, 1996.
[7] N. Koblitz, A Course in Number Theory and Cryptography, Springer, 1994.
[8] H. Delfs and H. Knebl, Introduction to Cryptography: Principles and Applications, Springer, 2002.
[9] O. Goldreich, Foundations of Cryptography, two volumes, CUP, 2001, 2004.

