
INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR

Stamp / Signature of the Invigilator

EXAMINATION (Mid Semester) SEMESTER (Autumn)

Roll Number Section Name

Subject Number C S 6 0 0 8 6 Subject Name Selected Topics in Algorithms

Department / Center of the Student Additional sheets

Important Instructions and Guidelines for Students

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.

2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the

subject you are taking examination.

4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed

by the paper-setter.

5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However,

exchange of these items or any other papers (including question papers) is not permitted.

6. Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough

work. Report to the invigilator if the answer script has torn or distorted page(s).

7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the

desk for checking by the invigilator.

8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence

from the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly

prohibited inside the Examination Hall.

9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not

allowed to take away the answer script with you. After the completion of the examination, do not leave the seat until

the invigilators collect all the answer scripts.

10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or

exchanging information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and

do not indulge in unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

To be filled in by the examiner

Question Number 1 2 3 4 5 6 7 8 9 10 Total

Marks Obtained

Marks obtained (in words) Signature of the Examiner Signature of the Scrutineer

CS60035/CS60086 Selected Topics in Algorithms, Autumn 2016–2017

Mid-Semester Test

20–September–2016 CSE-107, 2:00–4:00pm Maximum marks: 60

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

1. In the makespan scheduling problem, n jobs with processing times t1, t2, . . . , tn are to be assigned to m

identical processors. All the machines start operating at the same time t = 0, and finish the assigned

jobs without any idle time between consecutive jobs. The time when the machine with the highest

assigned load finishes is called the makespan. The objective is to minimize the makespan. Assume that

m 6 n. Let T = max(t1, t2, . . . , tn), so the input size can be taken as n log2 T . Consider the following two

parameterizations of the input:

Par1(t1, t2, . . . , tn;m) = mn
,

Par2(t1, t2, . . . , tn;m) = nm
.

Prove the following assertions.

(a) The makespan scheduling problem has a polynomial-time Par1-parameterized algorithm. (6)

Solution The exhaustive-search algorithms assigns each job to each of the processors. There are mn assignments possible.

For each assignment of all the n jobs, the makespan can be computed in time polynomial in the input size.

— Page 1 of 7 —

(b) The makespan scheduling problem cannot have a polynomial-time Par2-parameterized algorithm

unless P = NP. (8)

Solution Assume that there is a Par2-parameterized polynomial-time algorithm A for the makespan scheduling problem.

The running time of A is O((nm)k(n logT)l) for some constant k, l. We use this algorithm to solve the

subset-sum problem in polynomial time. Let t1, t2, . . . , tn be an instance of the subset-sum problem (so that

t1 + t2 + · · ·+ tn = 2S is even). We take m = 2, and run A on (t1, t2, . . . , tn;2), and return true if and only if

the optimal makespan returned by A is S. The running time is O(n2k+l logl T) which is O((n logT)2k+l), that

is, polynomial in the input size. Since the subset-sum problem is NP-complete, this algorithm for solving the

subset-sum problem in polynomial time proves P = NP.

— Page 2 of 7 —

2. We want to solve the following real-valued linear-programming problem:

minimize 3x1 +2x2 +2x3 +6x4

subject to x1 + x2 > 5, x1 + x3 > 4, x4 > 1, x1,x2,x3 > 0.

(a) What is the dual of this problem? (No need to derive.) (4)

Solution There are three constraints (first, second and third) in the primal problem. Thus, the dual problem is:

maximize 5y1 +4y2 + y3

subject to y1 + y2 6 3, y1 6 2, y2 6 2, y3 6 6, y1,y2,y3 > 0.

(b) Find all the vertices of the polytope defined by the constraints of the dual problem. (6)

Solution The polytope corresponding to the given constraints are shown in the adjacent figure. The ten vertices on the

polytope are:

P
P

P

P

y
3

y2

y
1

P

P
P

P
P

1 3

4

6

P5

7

8

9

0

2

P0 = (0,0,0),

P1 = (2,0,0),

P2 = (2,1,0),

P3 = (1,2,0),

P4 = (0,2,0),

P5 = (0,0,6),

P6 = (2,0,6),

P7 = (2,1,6),

P8 = (1,2,6),

P9 = (0,2,6).

— Page 3 of 7 —

(c) Evaluate the dual objective function at the vertices of the polytope of Part (b), and solve the dual

problem optimally. (6)

Solution The objective function—call it f (y1,y2,y3) = 5y1 + 4y2 + y3—is maximized at a vertex of the constraint

polytope. So it suffices to evaluate f at Pi for i = 0,1,2, . . . ,9. We have:

f (P0) = 0,

f (P1) = 10,

f (P2) = 14,

f (P3) = 13,

f (P4) = 8,

f (P5) = 6,

f (P6) = 16,

f (P7) = 20,

f (P8) = 19,

f (P9) = 14.

It follows that the dual problem has the optimal (maximum) solution 20 achieved at the vertex P7.

(d) What is the optimal solution of the original (that is, primal) problem? (4)

Solution By the principal of (strong) duality, the primal problem has the optimal (minimum) solution 20.

— Page 4 of 7 —

3. Let G = (V,E) be an undirected graph with n vertices and m edges. Each edge e ∈ E is associated

with a positive integer cost c(e). A cut (S,T) of G with T = S = V \ S is defined by the set of edges

C(S,T) = {(u,v) ∈ E | u ∈ S, v ∈ T}. The cost of the cut is cost(S,T) = ∑e∈C(S,T) c(e). The weighted

maximum-cut problem is to find a cut (S,T) for which cost(S,T) is maximized.

(a) Assuming that the edge costs are bounded by a constant, propose a polynomial-time local-search 2-

approximation algorithm for the weighted maximum-cut problem. (6)

Solution Set S = /0.
While (1) {

Find a vertex u such that switching u to the other part increases cost(S,S).
If no such u is found, return (S,S),
otherwise switch u to the other part.

}

Each iteration increases the cost of the cut by at least one. If the edge costs are bounded by B (a constant), the

maximum number of iterations is B×|E|, that is, the algorithm runs in polynomial time.

(b) Prove that the approximation factor of your algorithm is 2. (6)

Solution For each u ∈V , let LN(u) denote the set of neighbors of u in the same part (S or T) as u (the local neighbors),

and let RN(u) denote the set of non-local (remote) neighbors of u. Also, let Nbr(u) = LN(u)∪RN(u) (the set

of all neighbors of u). The algorithm terminates when for all u ∈V , we have

∑
v∈RN(u)

c(u,v)> ∑
w∈LN(u)

c(u,w).

Now, v is a remote neighbor of u if and only if u is a remote neighbor of v. It therefore follows that

— Page 5 of 7 —

2× cost(S,T) = ∑
u∈V

∑
v∈RN(u)

c(u,v) > ∑
u∈V

1

2

[

∑
v∈RN(u)

c(u,v)+ ∑
w∈LN(u)

c(u,w)

]

=
1

2
∑
u∈V

∑
v∈Nbr(u)

c(u,v) =
1

2
×2× ∑

e∈E

c(e) = ∑
e∈E

c(e) > OPT.

(c) Prove/disprove: The approximation factor 2 of your algorithm is tight, that is, you can construct a graph

for which the algorithm may stop with cost(S,T) equal to exactly half of the cost of the optimal cut. (6)

Solution Consider the example provided in the following figure.

S

T

2VV1

BA

C D

Here, n= 4k, and G is the complete bipartite graph K2k,2k with the bipartition V1,V2 having sizes |V1|= |V2|= 2k.

Each edge has cost 1, so the optimal cut has cost OPT = |E| = m = (2k)× (2k) = 4k2. Suppose that the

algorithm reaches an iteration where the current cut (S,T) corresponds to the four subsets A=V1∩S, B=V2∩S,

C =V1 ∩T , and D =V2 ∩T of sizes k each. With each edge cost being 1, this is an instance of the unweighted

maximum-cut problem. Each u ∈V has exactly k neighbors in its part (S or T), and exactly k neighbors in the

other part. For example, if u ∈ A, its neighbors in S are all the vertices in B, and its neighbors in T are all the

vertices in D. Therefore by moving any vertex from its part to the other, we cannot improve the cost of the

current cut, and this cost is the sum of the counts of A-D and B-C edges, that is, cost(S,T) = 2k2 = 1
2
×OPT .

— Page 6 of 7 —

4. Propose a 0,1-valued linear-programming formulation of the weighted maximum-cut problem of Exercise 3.

You do not have to solve the LP (or its relaxed version). Only express the given problem as a maximization

problem, and specify all the required constraints. (8)

Solution For each u ∈V , introduce a variable xu with the interpretation that

xu =
{

0 if u ∈ S,

1 if u ∈ T .

For each e ∈ E, introduce a variable ye with the interpretation that

ye =
{

1 if e ∈C(S,T) (that is, e is a cut edge),

0 otherwise.

For each e ∈V , introduce another variable ze with the interpretation that

ze =
{

0 if both the endpoints of e are in S,

1 otherwise.

Our task is to

maximize ∑
e∈E

c(e)ye.

For setting up the desired constraints, take any edge e = (u,v) ∈ E. If both u,v ∈ S, we have xu = xv = ye = 0.

If one of u,v belongs to S and the other to T , we have xu +xv +ye = 2. Finally, if both u,v belong to T , we have

xu = xv = 1 and ye = 0. So the constraints are

xu + xv + ye = 2ze for all e = (u,v) ∈ E.

— Page 7 of 7 —

Use this space for leftover answers and rough work

Use this space for leftover answers and rough work

Use this space for leftover answers and rough work

