CS60035/CS60086 Selected Topics in Algorithms, Autumn 2016–2017

Class Test

01-September-2016	CSE-120, 6:00–7:00pm	Maximum marks: 20

Roll no: _____ Name: _

[Write your answers in the question paper itself. Be brief and precise. Answer <u>all</u> questions.]

1. Let a_1, a_2, \ldots, a_n be positive integers with $\sum_{i=1}^n a_i = 2S$. The *partition problem* deals with deciding whether there exists a subset $\{i_1, i_2, \ldots, i_k\}$ of indices such that $a_{i_1} + a_{i_2} + \cdots + a_{i_k} = S$. The partition problem is known to be NP-Complete. We develop a dynamic-programming algorithm to solve the partition problem. Assume that each $a_i \leq S$, otherwise the output is trivially *false*. We prepare a two-dimensional table $T = (T_{i,j})_{\substack{1 \leq i \leq n \\ 0 \leq j \leq S}}$ of Boolean values (*true* and *false*) such that $T_{i,j} = true$ if and only if an exact sum of j can be realized by a sub-collection of the first i items a_1, a_2, \ldots, a_i . We fill T in a row-major order.

(2)

(3)

(a) Specify how to initialize the first row, that is, the entries $T_{1,j}$ for $0 \le j \le S$.

Solution $T_{1,j} = true$ if j = 0 or if $j = a_1, T_{1,j} = false$ otherwise.

(b) Explain how to populate the *i*-th row for $i \ge 2$.

Solution $T_{i,j} = true$ if $T_{i-1,j} = true$ or if $j \ge a_i$ and $T_{i-1,j-a_i} = true$, $T_{i,j} = false$ otherwise.

(c) How do you solve the partition problem after the table T is fully populated? (2)

Solution Return $T_{n,S}$.

- (d) Prove that the running time of this algorithm is pseudo-polynomial. (3)
- Solution Since each cell of T can be computed in O(1) time, the running time of this algorithm is O(nS). Let $M = \max_{i=1}^{n} a_i$. Then $S = \frac{1}{2} \sum_{i=1}^{n} a_i \leq \frac{1}{2} \sum_{i=1}^{n} M = \frac{1}{2} nM$, so the running time is O(n²M) which is polynomial in n and the maximum argument M.

- 2. Let U be an optimization problem, and \mathcal{M} the set of all feasible solutions for an input I. This exercise focuses on solving U using a local-search algorithm.
 - (a) What is meant by a neighborhood in the space \mathcal{M} ?
- Solution A function $N : \mathcal{M} \to 2^{\mathcal{M}}$ such that for all x, we have $x \in N(x)$, and for all $x, y \in \mathcal{M}$, we have $y \in N(x)$ if and only if $x \in N(y)$.
 - (b) What are local and global optima for the instance I of U?
- Solution An $x \in \mathcal{M}$ is called a local optimum if the cost of x is the best in N(x). An $x \in \mathcal{M}$ is called a global optimum if the cost of y is the best in the entire space \mathcal{M} .
 - (c) When is a neighborhood in \mathcal{M} called exact?

Solution A neighborhood is called exact if every local optimum is also a global optimum.

Let us now specialize to the problem of sorting *n* integers $a_1, a_2, ..., a_n$, that is, to finding a permutation $\pi = (\pi_1, \pi_2, ..., \pi_n)$ of (1, 2, ..., n) such that the sequence $a_{\pi_1}, a_{\pi_2}, ..., a_{\pi_n}$ is sorted (in non-decreasing order). This is equivalent to maximizing $\sum_{i=1}^n i a_{\pi_i}$ over all permutations π of (1, 2, ..., n). The feasible-solution space \mathscr{M} is thus the set of all permutations of (1, 2, ..., n).

(d) Define a polynomial-sized (in *n*) neighborhood in this solution space.

Solution For any permutation π , the neighborhood $N(\pi)$ consists of all permutations obtained by swapping π_i and π_j for any two $i, j \in \{1, 2, ..., n\}$. We allow i = j, that is, π is in the neighborhood of itself.

(e) Prove/Disprove: The neighborhood you proposed in Part (d) is exact.

(3)

Solution Yes, the neighborhood proposed in Part (d) is exact. Suppose that $\pi = (\pi_1, \pi_2, ..., \pi_n)$ is not a global optimum. Then, the sequence $a_{\pi_1}, a_{\pi_2}, ..., a_{\pi_n}$ is not sorted, that is, there exist indices *i*, *j* with *i* < *j* such that $a_{\pi_i} > a_{\pi_j}$. This in turn implies that $(j-i)(a_{\pi_i} - a_{\pi_j}) > 0$, that is, $ja_{\pi_i} + ia_{\pi_j} > ia_{\pi_i} + ja_{\pi_j}$. The permutation obtained from π by swapping π_i and π_j is in the neighborhood of π , that is, π is not a local optimum too.

(1)

(2)

(2)

(2)