
INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR

Stamp / Signature of the Invigilator

EXAMINATION (End Semester) SEMESTER (Autumn)

Roll Number Section Name

Subject Number C S 6 0 0 3 5 Subject Name Selected Topics in Algorithms

Department / Center of the Student Additional sheets

Important Instructions and Guidelines for Students

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.

2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the
subject you are taking examination.

4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed
by the paper-setter.

5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However,
exchange of these items or any other papers (including question papers) is not permitted.

6. Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough
work. Report to the invigilator if the answer script has torn or distorted page(s).

7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the
desk for checking by the invigilator.

8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence
from the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly
prohibited inside the Examination Hall.

9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not
allowed to take away the answer script with you. After the completion of the examination, do not leave the seat until
the invigilators collect all the answer scripts.

10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or
exchanging information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and
do not indulge in unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

To be filled in by the examiner

Question Number 1 2 3 4 5 6 7 8 9 10 Total

Marks Obtained

Marks obtained (in words) Signature of the Examiner Signature of the Scrutineer

CS60035/CS60086 Selected Topics in Algorithms, Autumn 2015–2016

End-Semester Test

26–November–2015 CSE-107, 2:00–5:00pm (+ ε) Maximum marks: 50

[
Write your answers in the question paper itself. Be brief and precise. Answer all questions.

]
1. You start with the array A = [1,2, . . . ,n]. Your task is to return a random permutation of 1,2, . . . ,n in A itself

(that is, using only O(1) additional space). Propose an efficient algorithm to solve your problem. Argue that
your algorithm is capable of generating any permutation of 1,2, . . . ,n with equal probability. (6)

Solution Assume that array indexing is zero-based. The following algorithm solves the given problem in Θ(n) time.

for i = n−1,n−2, . . . ,1 (in that order), repeat:
Choose j ∈U {0,1, . . . , i}.
Swap A[i] with A[j].

Start with any permutation π of 1,2, . . . ,n stored in A, and run selection sort on A. Conversely, if you start
with A = [1,2, . . . ,n] and apply the swaps of the selection sort in the reverse sequence, you have π stored in A.
Therefore the above algorithm is capable of generating any permutation of 1,2, . . . ,n. Different permutations
are generated by different choices of j in the loop, and the number of choices is exactly n(n−1) · · ·2 = n!, that
is, each permutation of 1,2, . . . ,n is generated with probability 1/n!.

— Page 1 of 8 —

2. Let G = (V,E) be an undirected graph. A subset C ⊆V is called a vertex cover of G if each edge e ∈ E has
at least one endpoint in C. We want to compute a vertex cover C of G with as few vertices as possible (the
minimum vertex cover problem). For simplicity, assume that G is connected.

We make a DFS traversal in G (starting from any arbitrary vertex). Denote by T the DFS tree produced by
the traversal. Let C consist of all the non-leaf vertices in T .

(a) Prove that C is a vertex cover of G. (6)

Solution Let e = (u,v) ∈ E. Then e is either a tree edge (an edge of T) or a back edge. In both the cases, at least one of
u and v must be a non-leaf node in T , that is, e is covered by C.

(b) Prove that this computation of C using the DFS traversal is a 2-approximation algorithm. (6)

Solution Let t be the number of internal nodes in T , that is, |C|= t. Let M be any matching in G. The absence of cross
edges in a DFS traversal implies that for each edge (u,v) ∈ M, either u or v is an internal node (or both are),
that is, t 6 2|M|. Moreover, OPT > |M|, so t 6 2×OPT.

— Page 2 of 8 —

(c) Suppose that each vertex v ∈ V is associated with a positive weight w(v). The weighted vertex cover
problem deals with the computation of a vertex cover C of G such that ∑

v∈C
w(v) is as small as possible.

Demonstrate that given any positive constant ∆, there exist infinitely many graphs, in which any DFS
traversal leads to an approximation factor > ∆. (6)

Solution Let G = T with |V | = n > 3 be a star graph with the center having weight (n− 1)∆+ 1, and with each of the
remaining vertices having weight 1. If we start the DFS traversal from the center, only the center is output as the
vertex cover, and the weight of this cover is (n−1)∆+1. If we start the DFS traversal from a non-center vertex,
then that vertex and the center constitute the vertex cover having a weight of (n− 1)∆+ 2. On the contrary,
if we constructed a vertex cover consisting of all vertices other than the center, that vertex cover would have a
weight of n−1.

— Page 3 of 8 —

3. Let A = [a1,a2, . . . ,an] be an array of n positive integers with S =
n

∑
i=1

ai. Let I0 and I1 be two subsets of

I := {1,2, . . . ,n} with I0 ∩ I1 = /0, and I0 ∪ I1 = I. Denote by A0 and A1 the following subcollections of A:
A0 = [ai]i∈I0

and A1 = [ai]i∈I1
. The partition problem deals with deciding the existence of I0, I1 satisfying:

S0 := ∑
i∈I0

ai = ∑
i∈I1

ai =: S1 =
S
2

. Here, we deal with an optimization version of the problem. We want to find

a partitioning of A, that is as balanced as possible, that is, we construct a partition I0, I1 such that S0 6 S1,
and S1 is as small as possible.

(a) For i ∈ {1,2, . . . ,n}, let xi denote the variable such that xi =

{
0 if i ∈ I0,
1 if i ∈ I1.

Formulate the balanced set

partitioning problem explained above as a 0,1-LP (linear programming) problem. Also mention how this
problem can be relaxed to an LP problem. (6)

Solution We have S1 =
n

∑
i=1

aixi. Moreover, the condition S0 6 S1 is equivalent to the condition S1 > S
2 . Therefore the

0,1-LP formulation is:

Minimize
n

∑
i=1

aixi subject to
n

∑
i=1

aixi >
S
2
, and xi ∈ {0,1} for all i = 1,2, . . . ,n.

The relaxed LP formulation replaces each non-linear constraint xi ∈ {0,1} by the two linear constraints:

xi > 0, and xi 6 1.

— Page 4 of 8 —

(b) We run an LP-solver to get an optimum solution (x∗1,x
∗
2, . . . ,x

∗
n) ∈ [0,1]n of the relaxed LP instance.

We make a deterministic rounding as follows: Take i ∈ I0 if x∗i <
1
2 , and i ∈ I1 if x∗i > 1

2 . Demonstrate by
examples that this rounding may produce an infeasible solution (that is, S1 <

S
2), and a solution that can be

as bad as possible (that is, S1 = S). (6)

Solution Infeasible solution: Take a1 = a2 = · · · = an−1 = 1, and an = n. Here, the optimal solution to the discrete
optimization problem is OPT = n. The relaxed LP instance has a solution with S1 = n− 1

2 achieved by
x∗1 = x∗2 = · · ·= x∗n−1 = 1, and x∗n =

1
2n . But then, rounding gives S1 = {1,2, . . . ,n−1} leading to S1 = n−1 < S

2 .

Worst possible solution: Take a1 = a2 = · · ·= an. The LP solver may output x∗1 = x∗2 = · · ·= x∗n =
1
2 . Rounding

gives I1 = {1,2, . . . ,n}, so S1 = S.

— Page 5 of 8 —

(c) Let us do randomized rounding instead. For each i∈ I, let us independently take xi = 1 with probability

x∗i . Denote X =
n

∑
i=1

aixi. Prove that Pr
(

X >
3
2
×OPT

)
6 4

(
n

∑
i=1

a2
i

)/(n

∑
i=1

ai

)2

, where OPT is the optimal

solution of the discrete optimization problem. (6)

Solution We have E(X) = ∑
n
i=1 aix∗i , and S

2 6 E(X) 6 OPT. But then, Pr
(
X > 3

2 ×OPT
)
= Pr(X−OPT > OPT/2) 6

Pr(X−E(X)> OPT/2) 6 Pr(|X−E(X)|> OPT/2) 6 4Var(X)/OPT2 6 16Var(X)/S2. For each i, we have
E(xi) = x∗i and E(x2

i) = x∗i , so Var(xi) = E(x2
i)−E(xi)

2 = x∗i (1− x∗i) 6
1
4 . Since xi are independent of one

another, we have Var(X) = ∑
n
i=1 Var(aixi) = ∑

n
i=1 a2

i Var(xi) = ∑
n
i=1 a2

i xi(1− xi) 6 1
4 ∑

n
i=1 a2

i . It follows that
Pr
(
X > 3

2 ×OPT
)
6 4(∑n

i=1 a2
i)/S2 = 4(∑n

i=1 a2
i)/(∑

n
i=1 ai)

2.

Hint: For any a > 0, we have Chebyshev’s inequality: Pr
(
|X−E(X)| > a

)
6

Var(X)

a2 .

Remarks: The probability bound of Part (c) is not always good. The trouble associated with infeasible
solutions can be overcome by switching the roles of I0, I1 for both deterministic and randomized rounding.

— Page 6 of 8 —

4. Recall that in the bin packing problem, n items of weights a1,a2, . . . ,an ∈ (0,1], and bins of capacity one
are given. Our task is to pack all of the given items in as few bins as possible. Consider the strategy that
keeps on adding items to the most recently opened bins so long as possible. When further placements are
not possible, the last bin is closed, a new bin is opened, and the next object is put in the newly opened bin.
One calls this the next fit or the linear bin packing strategy.

(a) Prove that the next fit strategy is a 2-approximation algorithm for the bin packing problem. (6)

Solution Let m be the number of bins used by the next-fit algorithm. Suppose that a bin j is at most half full in this
packing. But then, the next bin j+ 1 must be more than half full. Otherwise, the opening of bin j+ 1 is not
justified. More importantly, the total weight of the two bins j and j+ 1 must be larger than one. In fact, the
sum of the weights of the items placed in bin j and the weight of the first item put in bin j+1 must be larger
than one. It follows that among the first m−1 bins, at most m/2 bins can be at most half full, each followed by
a bin more than half full that makes the average weight of the two consecutive bins larger than half. Therefore
the total weight packed is ∑

n
i=1 ai > m/2. Moreover, OPT > ∑

n
i=1 ai, that is, m < 2×OPT. Since m and OPT

are integers, we have m 6 2×OPT−1.

— Page 7 of 8 —

(b) Prove that the approximation ratio 2 is tight, that is, given any ε > 0, there exists an input instance for
which the algorithm achieves an approximation ratio > 2− ε . (6)

Solution Given ε > 0, choose a positive integer k > 1
ε

. Let there be k−1 items of weight one, and k items of weight 1
k .

Suppose that these items occur in the sequence 1
k ,1,

1
k ,1, . . . ,

1
k ,1,

1
k . We have OPT = k (place all the objects of

weight 1
k in one bin, and each item of weight one in a single bin; this strategy must be optimal since all the k

bins are filled to the capacity). The next-fit algorithm uses m = 2k−1 bins. The approximation ratio is therefore
2− 1

k > 2− ε .

— Page 8 of 8 —

For leftover answers and rough work

For leftover answers and rough work

If you optimize everything, you will always be unhappy.
— Donald E. Knuth

