
CS29002 SWITCHING LABORATORY
CSE Department, IIT Kharagpur

Spring Semester 2015–16
Module A: Boolean Logic and Combinational Logic Circuits

Assignment 1
Date: 11–Jan–2016

Design a 3-bit to 8-bit encoder using NAND and NOR gates, having the following input/output behavior:

Input
x y z

Output
a b c d e f g h

0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 1 1 1
0 1 1 0 0 0 0 1 1 1 1
1 0 0 0 0 0 1 1 1 1 1
1 0 1 0 0 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

Note: NAND and NOR are universal gates, that is, any Boolean function can be realized by using only NAND gates or
only NOR gates. To see how, let us first take the case of two-input NAND gates. We have:

x' = (1x)',
xy = ((xy)')' = (1(xy)')', and
x + y = (x'y')' = ((1x)'(1y)')'.

This means that the three basic Boolean operations AND, OR and NOT can be realized by NAND gates. For NOR
gates, we have the dual formulas:

x' = (0 + x)',
x + y = ((x + y)')' = (0 + (x + y)')', and
xy = (x' + y')' = ((0 + x)' + (0 + y)')'.

Express each of the eight output bits as a simple Boolean function in the input variables x, y, z, and apply the
NAND/NOR implementation whichever you like. As an example, note that the fourth least significant bit e is 1 if and
only if xyz = 011 or x = 1. Therefore this bit has the formula e = x'yz + x. Another possibility is to express each bit
(except the leftmost) in terms of its previous bit. That is, we have a = xyz, b = a + xyz', c = b + xy'z, and so on. This
second approach adds to the complexity and depth of the circuit. For example, h is always 1, and d is the same as the
input x. Therefore designing these as h = 1 and d = x is more pragmatic than taking h = g + x'y'z' and d = c + xy'z'. Use
an appropriate mixture of both the techniques so that you have a relatively simple circuit.

