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1. You are given an unsorted array A = (a1,a2, . . . ,an) of n distinct positive integers, and m colors numbered

1,2, . . . ,m, where m = O(logn). Each element ai is given a unique color ci ∈ {1,2, . . . ,m}. The element

colors are supplied in another array C = (c1,c2, . . . ,cn). Your task is to find for each color j, the smallest

element b j of A having that color. If no element of A has the color j, take b j = ∞. Propose an optimal

EREW PRAM algorithm to compute the array B = (b1,b2, . . . ,bm) from A and C. Your algorithm should

run in O(logn) time using a total of O(n) operations (justify these performance bounds). You are not allowed

to use any sorting algorithm. (10)

Solution We use the idea of partitioning. Let r = ⌈n/m⌉. Partition A into r contiguous chunks, each of size m (the last

chunk may be smaller). An m× r array D is used to store the chunk minimums for each color. The size of D is

mr = m⌈n/m⌉= O(n). The steps of the algorithm are given below.

1. For j = 1,2, . . . ,m and k = 1,2, . . . ,r, pardo:

Set D[ j,k] := ∞.

2. For k = 1,2, . . . ,r, pardo:

For i = (k−1)m+1,(k−1)m+2, . . . ,(k−1)m+m, do:

If (i 6 n), then:

Set D[C[i],k] := min
(

D[C[i],k],A[i]
)

3. For j = 1,2, . . . ,m, pardo:

Compute B[ j] = min
(

D[ j,1],D[ j,2], . . . ,D[ j,r]
)

in parallel by BBT technique.

First note that none of the steps in this algorithm requires concurrent read or concurrent write. Initially, n,m,r
may be copied to all the processors within the given WT bounds.

Since the size of D is O(n), Step 1 takes O(1) time and uses O(mr) = O(n) operations.

The inner for loop of Step 2 is sequential. Therefore the parallel running time of this step is O(m) = O(logn),
and the work done is O(rm), that is, O(n).

Finally, each minimum in Step 3 can be computed in O(logr) time using O(r) operations. Since r = n/m 6 n,

the running time is O(logn). Moreover, the total work done in Step 3 is O(mr) = O(n).
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2. Let G = (V,E) be a connected undirected graph with V = {1,2, . . . ,n}, and with E presented as an n× n

adjacency matrix A. Assume that A[i, j] = 1 if the vertices i and j share an edge, and A[i, j] = 0 otherwise.

You are also given another n× n matrix D such that D[i, j] stores the shortest distance between i and j

(where this distance is measured by the number of edges on a shortest i, j path). Propose O(1)-time parallel

algorithms for solving the problems in the following two parts (write a WT-level pseudocode for each

algorithm). In each case, specify the type of the PRAM that you use. Mention the most restrictive type

that is needed by your algorithm (in terms of restriction, take EREW > CREW > common CRCW >
priority/arbitrary CRCW). For each algorithm, mention the work done, and justify the correctness. The two

algorithms should be independent in the sense that no one should require the other as a subroutine.

(a) Given a vertex s ∈ V , output a BFS tree of G rooted at s. The tree should be written to the shared

memory in the parent-pointer representation. (10)

Solution The pseudocode is given below.

Set parent(s) := 0.

For i = 1,2, . . . ,n and for j = 1,2, . . . ,n, pardo:

If (A[i, j] = 1) and (D[s, i] = D[s, j]+1), then:

Set parent(i) := j.

Type of PRAM: priority or arbitrary CRCW.

Work done is O(n2).

Correctness: Every node at level l > 1 is connected to a (unique) node at level l −1. By induction, this gives a

spanning tree of G. Since the levels of the nodes in the tree are the respective distances of the nodes from the

root, the tree is a BFS tree.

Note that if A[i, j] = 1, then |D[s, i]−D[s, j]| ∈ {0,1,−1}. Therefore the condition (D[s, i] = D[s, j]+1) can be

replaced by (D[s, i]> D[s, j]).
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(b) Decide whether G is a bipartite graph. The decision should be written to a global variable in the shared

memory. (10)

Solution We use a global variable IS BIP to store the decision.

Initialize IS BIP := 1.

Pick any arbitrary vertex s.

For i = 1,2, . . . ,n and for j = 1,2, . . . ,n, pardo:

If (A[i, j] = 1), and D[s, i] and D[s, j] are of the same parity, then:

Set IS BIP := 0.

Type of PRAM: common CRCW.

Work done is O(n2).

Correctness: If the condition in the body of the for loop is never satisfied, then put all the vertices at even

distances from s in one part, and all the vertices at odd distances from s in another part. This gives a

bipartitioning of V . Conversely, suppose that the condition in the body of the for loop is satisfied by some

i and j. Consider a BFS tree T of G rooted at s. Let k be the LCA of i and j in the tree. Then the k, i path in T ,

the k, j path in T , and the edge (i, j) constitute an odd-length cycle in G.

Note again that if A[i, j] = 1, then |D[s, i]−D[s, j]| ∈ {0,1,−1}. The cases ±1 are not problematic. We only

need to avoid the case D[s.i] = D[s, j], so the parity check can be replaced by a check of this condition.
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3. Let G = (V,E) be an undirected graph with V = {1,2, . . . ,n}. An independent set I of G is a subset I ⊆ V

such that no two vertices in I share an edge. An independent set I is called maximal if I ∪{v} is not an

independent set for all v ∈V − I.

Let us represent an independent set I as a sequence v1,v2, . . . ,vs of vertices in the sorted order v1 < v2 <
· · · < vs. Such a sequence can be identified with the string v1v2 . . .vs over the alphabet {1,2, . . . ,n}. The

lexicographically first maximal independent set (LFMIS) is a maximal independent set that appears

before all other maximal independent sets, as strings. By definition, the LFMIS of G is unique.

For example, the LFMIS for the following graph is {1,2,5}. Some other maximal independent sets in the

graph are {1,2,6}, {2,5,9}, and {4,7,8,9}.

1

2

3

4

5

6

7

8

9

The decision problem LFMISP takes as input the undirected graph G = (V,E) and a vertex v ∈ V , and

outputs the decision whether v belongs to the LFMIS of G.

(a) Propose a sequential greedy algorithm to compute the LFMIS of G in polynomial time. Establish the

correctness and the running time of your algorithm. (10)

Solution The algorithm has the following pseudocode.

Initialize I := /0.

For v = 1,2, . . . ,n (in that order), do:

If there is no edge between v and any vertex of I, then:

Set I := I ∪{v}.

Return I.

Running time: O(n2) (can be improved by suitable data structures).

Correctness: First, note that the algorithm produces a maximal independent set (why?).

Let I = {v1,v2, . . . ,vk,vk+1,vk+2, . . . ,vs} be the output of the algorithm. Suppose that I is not the LFMIS.

Instead the LFMIS is J = {v1,v2, . . . ,vk,wk+1,wk+2, . . . ,wt}. Here, I and J agree on the first k vertices (for

some k > 0). After that, either one of I and J ends (both cannot end together because I 6= J), or I and J have

different vertices at the (k+1)-st position (that is, vk+1 6= wk+1).

If k = t (that is, J ends after the common prefix), then J is not maximal (in this case, I contains all the vertices

of J plus some more because I 6= J). So, k < t.

Analogously, if k = s (that is, I ends after the common prefix), then I is not maximal, but the algorithm outputs

a maximal independent set. So k < s.

But then, wk+1 < vk+1 (because J is lexicographically smaller than I), so wk+1 is considered before vk+1 in the

for loop of the algorithm. Moreover, wk+1 is independent of v1,v2, . . . ,vk (they are all in J). Therefore there is

no reason why the algorithm skipped wk+1 and included vk+1.
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(b) Prove that LFMISP is P-complete. (Hint: NORCVP) (10)

Solution Computing the LFMIS solves LFMISP. By Part (a), LFMISP is in P.

For proving the P-hardness of LFMISP, we make a reduction from NORCVP. Let φ = (g1,g2, . . . ,gn) be an

instance for NORCVP. We make the standard assumptions about φ , that is, all inputs are 1, gi = ¬(g j ∨ gk)
means j,k < i, and gn is the output. We prepare a graph G which is the same as the circuit for φ with the vertex

ordering g1 < g2 < · · · < gn, and take v = gn. It is easy to see that {gi | gi = 1} is the LFMIS of the graph.

Indeed this LFMIS is precisely what will be returned by the algorithm of Part (a) (why?). Therefore gn is in the

LFMIS of the graph if and only if gn = 1 in the circuit.
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4. Let S = {1,2, . . . ,m} be a finite set of constant size m, and F = {⊡ : S × S → S} the set of all binary

operations on S. Each such operation ⊡ is specified by an m×m look-up table LUT⊡ such that LUT⊡(i, j) =
i⊡ j for 1 6 i, j 6 m.

Let T be a rooted full binary tree such that the leaves are labeled by elements of S, and each internal node u is

labeled by an operation ⊡u ∈ F . Assume that T is given in the adjacency-list representation with additional

pointers to enable fast Euler-tour computations.

Develop a parallel algorithm to evaluate the expression given by T . State the running time of and the work

done by your algorithm. Note that the functions ⊡ ∈ F need not be commutative or associative. (10)

Solution We will perform tree contraction by repeatedly applying the rake operation concurrently to sets of leaves, as

done in the class. For each node u of T , let val(u) denote the value of the function represented by the subtree

rooted at u.

Let H = {µ : S → S} be the set of all unary operations on S. For each node u, we maintain a unary

operation µu ∈ H with the following invariant: for each internal node u, with children uℓ and ur, val(u) =
µuℓ(val(uℓ)) ⊡u µur(val(ur)). For each node u, we initially take µu to be the identity operation that maps each

s ∈ S to itself. Clearly, the invariant is satisfied initially.

In order to explain how to update the expressions after a rake operation, we let ℓ be a leaf with parent p,

grandparent g, and sibling x. Assume that ℓ is the left child of p, and p is the left child of g (other cases can be

handled analogously). Let y be the sibling of p. Consider applying rake on ℓ. Before the rake operation, our

invariant gives val(g) = µp(val(p)) ⊡g µy(val(y)), and val(p) = µℓ(val(ℓ)) ⊡p µx(val(x)). We thus have

val(g) = µp

(

µℓ(val(ℓ)) ⊡p µx(val(x))
)

⊡g µy(val(y)) = µ ′
x(val(x)) ⊡g µy(val(y)),

where

µ ′
x(z) = µp

(

(µℓ(val(ℓ)) ⊡p µx(z)
)

for all z ∈ S.

This is well-defined, since µℓ(val(ℓ)) is a constant in S. After the rake is performed, g becomes the parent of x

and y, so the invariant is maintained if we replace µx by µ ′
x.

The sets F and H have constant sizes, and so too is the description of each ⊡ ∈ F and each µ ∈ H. Thus,

the above update can be carried out in constant time. By the analysis of tree contraction done in the class, the

algorithm runs in O(logn) time, and uses O(n) number of operations.
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5. Let X = (x1,x2, . . . ,xn) be an unsorted array of distinct integers. For 1 6 i 6 n, the nearest smaller value

(NSV) of xi is the element x j of X such that (i) j < i, (ii) x j < xi, and (iii) xk > xi for all k in the range

j+1 6 k 6 i−1. If no such j exists, then the NSV of ai is undefined. The all nearest smaller value (ANSV)

problem for X is the determination of j for each i ∈ {1,2, . . . ,n} such that NSV(xi) = x j provided that the

NSV of xi is defined. If the NSV of xi is not defined, the ANSV problem will return the index 0 for that i.

For example, the ANSV for X = (4,3,8,1,6,7,2,5) is (0,0,2,0,4,5,4,7).

(a) Let ALG be a parallel algorithm that solves the ANSV problem for X in T (n) time using W (n) work.

You are given two sorted arrays A = (a1,a2, . . . ,am) and B = (b1,b2, . . . ,bn) of integers. Assume that these

m+ n elements are distinct from one another. Use ALG to merge A and B in T (m+ n)+O(1) time using

W (m+n)+O(m+n) work. Do not use any other merging algorithm covered or not covered in the class. (10)

Solution It suffices to compute rank(ai : B) for all 1 6 i 6 m, and rank(b j : A) for all 1 6 j 6 n. We explain

only the computation of all rank(ai : B) (the other computation being analogous). Prepare the array X =
(b1,b2, . . . ,bn,am,am−1, . . . ,a1). This takes O(1) time and O(m + n) work. Invoke ALG on X to get the

ANSV array U for X . This step takes T (m+ n) time and W (m+ n) work. Finally, note that rank(ai : B) =
U [n+(m+1− i)], so all rank(ai : B) can be computed from U in O(1) time using O(m) work.
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(b) Design the algorithm ALG with T (n) = O(logn) and W (n) = O(n logn). ALG should meet these

bounds on a CREW PRAM. (10)

Solution Fix an i. Consider the array Yi = (y1,i,y2,i, . . . ,yi,i), where yk,i = min(xk,xk+1, . . . ,xi) for 1 6 k 6 i. Here, yk,i

are the suffix minima of the subarray {a1,a2, . . . ,ai}. The array Yi is sorted in the non-decreasing order. NSV

of xi is the last yk,i that is smaller than xi. However, if such a k does not exist, that is, if y1,i = xi, then the NSV

of xi is not defined. Since Yi is sorted, the desired k can be found by performing binary search in Yi. Preparing

the entire suffix minima array Yi and the binary search can be done in O(log i) = O(logn) time as desired (the

procedure for different i can run in parallel). But the work done will be O(∑i i) = O(n2).

For performing the binary search, we do not need the entire array Yi. Only the elements that are queried should

be known or computed whenever they are needed. This can be achieved by range minima calls, each of which

takes O(1) sequential time. A data structure S for supporting these queries can be prepared only once for the

entire array X in O(logn) time and using O(n) work. After this precomputation, the ANSV computations (for

all i) based upon query-driven binary search can be done in O(logn) time using O(n logn) operations.
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