Class Test 2

06:30pm-07:30pm

Roll no:

Name:

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

Let $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be an array (not necessarily sorted) of n distinct integers (positive, negative, or zero). A pair $\left(a_{i}, a_{j}\right)$ satisfying the two conditions $i<j$ and $a_{i}<a_{j}$ is called sorted within (SW) A. Let $S=\left(\left(a_{i_{1}}, a_{j_{1}}\right),\left(a_{i_{2}}, a_{j_{2}}\right), \ldots,\left(a_{i_{r}}, a_{j_{r}}\right)\right)$ be a set of some (not necessarily all) sorted-within pairs of A. Let us call such a set S a sorted-within set (an SWS) of pairs from A.

Now, let S be a set of pairs of elements from A. Each pair in S is of the form $\left(a_{i}, a_{j}\right)$ with $i<j$. We do not impose the constraint $a_{i}<a_{j}$, so the pairs in S may or may not be SW. Let $a_{k_{1}}, a_{k_{2}}, \ldots, a_{k_{t}}(t \geqslant 0)$ with $k_{1}<k_{2}<\cdots<k_{t}$ be all the elements of A not belonging to any pair in S (as a first or a second component). These elements of A are called unpaired (with respect to S). We call S an ascent destroyer (AD) if we have $a_{k_{1}}>a_{k_{2}}>\cdots>a_{k_{t}}$.
For instance, take $A=(5,-2,3,8,0,-4,6,-1)$. The SWS $S_{1}=\{(5,8),(-2,8),(-2,-1),(5,6)\}$ is an AD because the unpaired elements satisfy $3>0>-4$, whereas the $\operatorname{SWS} S_{2}=\{(5,8),(-2,3),(-2,6),(5,6)\}$ is not an AD because the second of the inequalities $0>-4>-1$ does not hold. Finally, the set $S_{3}=\{(5,8),(-2,8),(-2,-1),(8,6)\}$ is not an SWS, because it contains the non-SW pair $(8,6)$. But S_{3} is an AD because the unpaired elements satisfy $3>0>-4$ in the sequence as they appear in A. Finally, the set $S_{4}=\{(5,8),(-2,3),(-2,6),(8,6)\}$ is neither an SWS nor an AD.

In general, the $\operatorname{SWS}\left\{\left(a_{i}, a_{j}\right) \mid 1 \leqslant i<j \leqslant n\right.$ and $\left.a_{i}<a_{j}\right\}$ of all possible SW pairs is necessarily an AD. However, this set may contain $\Theta\left(n^{2}\right)$ pairs. This bound is tight, and is achieved, for example, if A is sorted in the ascending order. However, a sorted array contains much smaller ADs like $\left\{\left(a_{1}, a_{j}\right) \mid 2 \leqslant j \leqslant n\right\}$ (of size $n-1$), $\left\{\left(a_{i}, a_{n}\right) \mid 1 \leqslant i \leqslant n-1\right\}$ (of size $n-1$), and $\left\{\left(a_{1}, a_{2}\right),\left(a_{3}, a_{4}\right), \ldots,\left(a_{r}, a_{r+1}\right)\right\}$ (of size $\lfloor n / 2\rfloor$), where $r=n-1$ or $n-2$ according as whether n is even or odd.

Your task is to find any set S of pairs from a given $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, which is both an SWS and an AD. Adversarial arguments show that this problem cannot be solved using o (n) operations (you do not have to prove this). You need to find one AD SWS S using only $\mathrm{O}(n)$ operations. The order of the pairs in your S is not important. However, the pairs in S must be distinct from one another (that is, every two pairs in S must differ in at least one of the two components). You must output S as a contiguous array of pairs. You may use an additional $\mathrm{O}(n)$ space (but no more).

1. Propose a sequential algorithm to solve the problem in $\mathrm{O}(n)$ time. Your proposal must contain a clear pseudocode, and a proof of correctness and running time.

Solution We use a stack K to solve the problem.

1. Initialize K to an empty stack.
2. Initialize S to the empty set.
3. For $j=1,2, \ldots, n$ (in that order), do:
(a) If K is empty, then push a_{j} to K,
(b) else, do:

Extract the top t from K.
If $\left(a_{j}>t\right)$, then
set $S:=S \cup\left\{\left(t, a_{j}\right)\right\}$,
else, do:
Push t back to K.
Push a_{j} to K.

4. Return S.

Assuming that push and pop in K can be done in $\mathrm{O}(1)$ time and S can be augmented by a new element in $\mathrm{O}(1)$ time, the running time of this algorithm is clearly $\mathrm{O}(n)$. For the proof of correctness, first note that S consists of pairs of the form $\left(t, a_{j}\right)$ with $t<a_{j}$. Moreover, this t must have been pushed as a_{i} to K for some $i<j$. So S consists only of SW pairs. The elements not paired by S are precisely those that remain in the stack K when the for loop terminates. Whenever a new element a_{j} is pushed on the top of t in K, we have $a_{j}<t$, that is, the stack is always kept in the descending order from bottom to top. Finally, note that the elements of K from bottom to top are always in the same order as they appear in A.
2. Propose an optimal parallel algorithm to solve the problem in $\mathrm{O}(\log n)$ time. Your algorithm must meet the WT bounds on an EREW PRAM. The input array A is supplied in the shared memory, and your algorithm should write S as a contiguous array in the shared memory. Justify that your algorithm is correct and optimal, and runs in $\mathrm{O}(\log n)$ time.

Solution For each j, we plan to add at most one SW pair $\left(a_{i}, a_{j}\right)$. Here, i may be the same for multiple values of j. In order to avoid concurrent read or write, we first compute the prefix minima of A.

1. Compute all the prefix minima of $A[]$ in $B[]$ using the BBT algorithm.
2. For $j=1,2, \ldots, n$, pardo:
(a) If $(A[j]>B[j])$, then set $C[j]:=1$,
(b) else set $C[j]:=0$.
3. Compute the prefix sums of $C[]$ in $D[]$ using the BBT algorithm.
4. For $j=1,2, \ldots, n$, pardo:
(a) If $(C[j]=1)$, then set $S[D[j]]:=(B[j], A[j])$.

The prefix minima in Step 1 and the prefix sums in Step 3 can be computed in $\mathrm{O}(\log n)$ time using $\mathrm{O}(n)$ operations on an EREW PRAM. The remaining steps do not require any concurrent read or write, and can be done in $\mathrm{O}(1)$ time using $\mathrm{O}(n)$ operations. It follows that the overall running time is $\mathrm{O}(\log n)$, and the total work done is $\mathrm{O}(n)$ (which is optimal).
For proving the correctness, first note that S consists only of pairs $(A[i], A[j])$ for which $A[i]=\min (A[1 \ldots j])<$ $A[j]$ (so $i<j$). Therefore S is an SWS. In order to show that S is an AD, take any two elements a_{k}, a_{l} with $k<l$, unpaired in S. Since $A[l]$ is unpaired, we must have the condition $A[l]=\min (A[1 \ldots l])$. This, in particular, implies that $A[l]<A[k]$.

