
CS60027 Parallel Algorithms, Autumn 2023–2024

Class Test 2

08–November–2023 06:30pm–07:30pm Maximum marks: 20

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

Let A = (a1,a2, . . . ,an) be an array (not necessarily sorted) of n distinct integers (positive, negative, or

zero). A pair (ai,a j) satisfying the two conditions i < j and ai < a j is called sorted within (SW) A. Let

S = ((ai1 ,a j1),(ai2 ,a j2), . . . ,(air ,a jr)) be a set of some (not necessarily all) sorted-within pairs of A. Let us

call such a set S a sorted-within set (an SWS) of pairs from A.

Now, let S be a set of pairs of elements from A. Each pair in S is of the form (ai,a j) with i < j. We do

not impose the constraint ai < a j, so the pairs in S may or may not be SW. Let ak1
,ak2

, . . . ,akt
(t > 0) with

k1 < k2 < · · ·< kt be all the elements of A not belonging to any pair in S (as a first or a second component).

These elements of A are called unpaired (with respect to S). We call S an ascent destroyer (AD) if we have

ak1
> ak2

> · · ·> akt
.

For instance, take A = (5,−2,3,8,0,−4,6,−1). The SWS S1 = {(5,8),(−2,8),(−2,−1),(5,6)} is an AD

because the unpaired elements satisfy 3 > 0 > −4, whereas the SWS S2 = {(5,8),(−2,3),(−2,6),(5,6)}
is not an AD because the second of the inequalities 0 > −4 > −1 does not hold. Finally, the set

S3 = {(5,8),(−2,8),(−2,−1),(8,6)} is not an SWS, because it contains the non-SW pair (8,6). But S3 is

an AD because the unpaired elements satisfy 3 > 0 > −4 in the sequence as they appear in A. Finally, the

set S4 = {(5,8),(−2,3),(−2,6),(8,6)} is neither an SWS nor an AD.

In general, the SWS {(ai,a j) | 1 6 i < j 6 n and ai < a j} of all possible SW pairs is necessarily an AD.

However, this set may contain Θ(n2) pairs. This bound is tight, and is achieved, for example, if A is sorted

in the ascending order. However, a sorted array contains much smaller ADs like {(a1,a j) | 2 6 j 6 n}
(of size n−1), {(ai,an) | 1 6 i 6 n−1} (of size n−1), and {(a1,a2),(a3,a4), . . . ,(ar,ar+1)} (of size ⌊n/2⌋),

where r = n−1 or n−2 according as whether n is even or odd.

Your task is to find any set S of pairs from a given A = (a1,a2, . . . ,an), which is both an SWS and an AD.

Adversarial arguments show that this problem cannot be solved using o(n) operations (you do not have to

prove this). You need to find one AD SWS S using only O(n) operations. The order of the pairs in your S is

not important. However, the pairs in S must be distinct from one another (that is, every two pairs in S must

differ in at least one of the two components). You must output S as a contiguous array of pairs. You may

use an additional O(n) space (but no more).

1. Propose a sequential algorithm to solve the problem in O(n) time. Your proposal must contain a clear

pseudocode, and a proof of correctness and running time. (10)

— Page 1 of 3 —

Solution We use a stack K to solve the problem.

1. Initialize K to an empty stack.

2. Initialize S to the empty set.

3. For j = 1,2, . . . ,n (in that order), do:

(a) If K is empty, then push a j to K,

(b) else, do:

Extract the top t from K.

If (a j > t), then

set S := S∪{(t,a j)},

else, do:

Push t back to K.

Push a j to K.

4. Return S.

Assuming that push and pop in K can be done in O(1) time and S can be augmented by a new element in O(1)
time, the running time of this algorithm is clearly O(n). For the proof of correctness, first note that S consists

of pairs of the form (t,a j) with t < a j. Moreover, this t must have been pushed as ai to K for some i < j. So S

consists only of SW pairs. The elements not paired by S are precisely those that remain in the stack K when the

for loop terminates. Whenever a new element a j is pushed on the top of t in K, we have a j < t, that is, the stack

is always kept in the descending order from bottom to top. Finally, note that the elements of K from bottom to

top are always in the same order as they appear in A.

— Page 2 of 3 —

2. Propose an optimal parallel algorithm to solve the problem in O(logn) time. Your algorithm must meet the

WT bounds on an EREW PRAM. The input array A is supplied in the shared memory, and your algorithm

should write S as a contiguous array in the shared memory. Justify that your algorithm is correct and optimal,

and runs in O(logn) time. (10)

Solution For each j, we plan to add at most one SW pair (ai,a j). Here, i may be the same for multiple values of j. In

order to avoid concurrent read or write, we first compute the prefix minima of A.

1. Compute all the prefix minima of A[] in B[] using the BBT algorithm.

2. For j = 1,2, . . . ,n, pardo:

(a) If (A[j]> B[j]), then set C[j] := 1,

(b) else set C[j] := 0.

3. Compute the prefix sums of C[] in D[] using the BBT algorithm.

4. For j = 1,2, . . . ,n, pardo:

(a) If (C[j] = 1), then set S[D[j]] := (B[j],A[j]).

The prefix minima in Step 1 and the prefix sums in Step 3 can be computed in O(logn) time using O(n)
operations on an EREW PRAM. The remaining steps do not require any concurrent read or write, and can be

done in O(1) time using O(n) operations. It follows that the overall running time is O(logn), and the total work

done is O(n) (which is optimal).

For proving the correctness, first note that S consists only of pairs (A[i],A[j]) for which A[i] = min(A[1 . . . j])<
A[j] (so i < j). Therefore S is an SWS. In order to show that S is an AD, take any two elements ak,al with k < l,

unpaired in S. Since A[l] is unpaired, we must have the condition A[l] = min(A[1 . . . l]). This, in particular,

implies that A[l]< A[k].

— Page 3 of 3 —

