
CS60027 Parallel Algorithms, Autumn 2023–2024

Class Test 1

13–September–2023 06:30pm–07:30pm Maximum marks: 25

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. In the class, we have seen a combination of an O(1)-time non-optimal algorithm (let us call this the

basic maximum algorithm) and an O(logn)-time optimal algorithm, to design an optimal O(log logn)-time

algorithm for computing the maximum of an array with n distinct elements, on a common CRCW PRAM.

The combination used doubly-logarithmic depth trees. This exercise explores the same idea of accelerated

cascading, but using another type of trees. Although these new trees cannot yield a superfast running time

of O(log logn), we can do better than O(logn) time without sacrificing optimality.

(a) Let t > 2 be a positive integer fixed beforehand (t is not necessarily a constant, that is, t may be a

function of n). Instead of a balanced binary tree, consider a balanced t-ary tree. For simplicity, assume that

n is a power of t. Then, each internal node in the tree has exactly t child nodes. The n input elements are fed

to the n leaf nodes of the tree (one element per node). Each internal node uses the basic maximum algorithm

for computing the maximum of the values from its t child nodes. The computation proceeds from the bottom

to the top of the tree. The root eventually computes the final result. Deduce that the parallel running time of

this algorithm is O

(

logn

log t

)

, and the work done by this algorithm is O(nt). (5)

Solution Let h be the height of the tree. This implies th = n, that is, h =
logn

log t
. Each level takes O(1) parallel time.

For computing the work, let n′ be a the number of nodes at some depth. The work done at that depth is

O(t2n′). Summing over all internal nodes gives a total work of O

(

t2(n/t)+ t2(n/t2)+ t2(n/t3)+ · · ·+ t2
)

=

O

(

nt

(

1+
1

t
+
(1

t

)2

+ · · ·

)

)

= O

(

nt

1− 1
t

)

= O(nt), because 1−
1

t
>

1

2
for all t > 2.

— Page 1 of 3 —



(b) Find a value of t, for which the parallel running time of the algorithm of Part (a) is O(
√

logn). What is

the work done (as a function of n only) for this value of t? (5)

Solution We want
logn

log t
=
√

logn, that is, t = 2
√

logn. The work done for this value of t is O

(

n2
√

logn
)

.

(c) Use the idea of accelerated cascading that combines the algorithm of Part (a) with an optimal algorithm,

for designing an optimal O(
√

logn)-time algorithm to compute the maximum on a common CRCW PRAM.

Use the value of t derived in Part (b). Show that your algorithm is optimal, and has a parallel running time

of O(
√

logn). (5)

Solution First, use the optimal BBT algorithm until the problem size reduces to n′ = n/2
√

logn. This requires O(
√

logn)
(sequential) iterations, each taking O(1) parallel running time. The work done in this stage is O(n).

Then run the algorithm of Part (a) on the n′ max candidates. Take t = 2
√

logn′ . By Part (b), the running time of

this stage is O(
√

logn′)=O(
√

logn). Moreover, the work done in this stage is O

(

n′2
√

logn′
)

=O

(

n′2
√

logn
)

=

O(n).

Note: If we take t = 2
√

logn in the second stage, the same asymptotic bounds follow.

— Page 2 of 3 —



2. Let A = (a0,a1,a2, . . . ,an−1) be an array of n integers (not necessarily distinct). We want to compute the

prefix sums si = a0 + a1 + a2 + · · ·+ ai for all i = 0,1,2, . . . ,n− 1. For simplicity, assume that n = 2d .

Consider a synchronous d-dimensional hypercube H. As usual, the processors in H are numbered by d-bit

integers. The i-th processor is supplied the value of ai, and will eventually store the partial sum si (for each

i = 0,1,2, . . . ,n− 1). In this exercise, you design an O(logn)-time algorithm for doing the computations

on the hypercube H. A skeleton of the algorithm for Processor i is given below. If i = id−1id−2 . . . i1i0, we

denote i(h) = id−1 . . . ih+1ihih−1 . . . i0, where ih is the complement of the bit ih. Notice that the for loop is

sequential, so the body of the loop would take O(1) parallel time for each value of h.

Initialize my result and my message.

For h = 0,1,2, . . . ,d −1, repeat:

Exchange my message with i(h).

Update my result and my message.

Fill out the details of the algorithm. Also demonstrate how the algorithm works for n = 8 (that is, on a 3-d

hypercube.) (10)

Solution Each processor maintains two variables s (my result) and x (my message). A value received from a neighboring

processor is stored in y. The algorithm for the i-th processor is given below.

Initialize s = ai and x = ai.

For h = 0,1,2, . . . ,d −1, repeat:

If ih = 0, do: If ih = 1, do:

Send x to processor i(h). Send x to processor i(h).

Receive y from processor i(h). Receive y from processor i(h).

Set x = x+ y. Set x = x+ y.

Compute s = s+ x.

Let us see how this works for d = 3.

Initialization

Node s x

0 a0 a0

1 a1 a1

2 a2 a2

3 a3 a3

4 a4 a4

5 a5 a5

6 a6 a6

7 a7 a7

After iteration for h = 0

Node s x

0 a0 a0 +a1

1 a0 +a1 a0 +a1

2 a2 a2 +a3

3 a2 +a3 a2 +a3

4 a4 a4 +a5

5 a4 +a5 a4 +a5

6 a6 a6 +a7

7 a6 +a7 a6 +a7

After iteration for h = 1

Node s x

0 a0 a0 +a1 +a2 +a3

2 a0 +a1 +a2 a0 +a1 +a2 +a3

1 a0 +a1 a0 +a1 +a2 +a3

3 a0 +a1 +a2 +a3 a0 +a1 +a2 +a3

4 a4 a4 +a5 +a6 +a7

6 a4 +a5 +a6 a4 +a5 +a6 +a7

5 a4 +a5 a4 +a5 +a6 +a7

7 a4 +a5 +a6 +a7 a4 +a5 +a6 +a7

After iteration for h = 2

Node s x

0 a0 a0 +a1 +a2 +a3 +a4 +a5 +a6 +a7

4 a0 +a1 +a2 +a3 +a4 a0 +a1 +a2 +a3 +a4 +a5 +a6 +a7

1 a0 +a1 a0 +a1 +a2 +a3 +a4 +a5 +a6 +a7

5 a0 +a1 +a2 +a3 +a4 +a5 a0 +a1 +a2 +a3 +a4 +a5 +a6 +a7

2 a0 +a1 +a2 a0 +a1 +a2 +a3 +a4 +a5 +a6 +a7

6 a0 +a1 +a2 +a3 +a4 +a5 +a6 a0 +a1 +a2 +a3 +a4 +a5 +a6 +a7

3 a0 +a1 +a2 +a3 a0 +a1 +a2 +a3 +a4 +a5 +a6 +a7

7 a0 +a1 +a2 +a3 +a4 +a5 +a6 +a7 a0 +a1 +a2 +a3 +a4 +a5 +a6 +a7

— Page 3 of 3 —


