
INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR

Stamp / Signature of the Invigilator

EXAMINATION (End Semester) SEMESTER (Autumn)

Roll Number Section Name

Subject Number C S 6 0 0 2 6 Subject Name Parallel and Distributed Algorithms

Department / Center of the Student Additional sheets

Important Instructions and Guidelines for Students

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.

2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the

subject you are taking examination.

4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed

by the paper-setter.

5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However,

exchange of these items or any other papers (including question papers) is not permitted.

6. Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough

work. Report to the invigilator if the answer script has torn or distorted page(s).

7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the

desk for checking by the invigilator.

8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence

from the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly

prohibited inside the Examination Hall.

9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not

allowed to take away the answer script with you. After the completion of the examination, do not leave the seat until

the invigilators collect all the answer scripts.

10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or

exchanging information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and

do not indulge in unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

To be filled in by the examiner

Question Number 1 2 3 4 5 6 7 8 9 10 Total

Marks Obtained

Marks obtained (in words) Signature of the Examiner Signature of the Scrutineer

CS60026 Parallel and Distributed Algorithms, Autumn 2018–2019

End-Semester Test

15–November–2018 F116/F142/NC341/NC342, 02:00–05:00 pm Maximum marks: 60

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

If you use any algorithm/result/formula covered in the class, just mention it, do not elaborate.

1. Let A = (ai, j) be an invertible n×n matrix with real-valued entries. Your task is to compute B = A−1. One

popular algorithm for this computation involves Gaussian elimination. Start with B = In (where In is the

n×n identity matrix). Applying elementary row operations (exchanging two rows, multiplying a row by a

non-zero value, subtracting a multiple of a row from another), convert A to the identity matrix In. Apply

the same sequence of elementary row operations to B. When A is reduced to In, B changes from In to A−1.

Consider this algorithm as an optimal sequential algorithm for inverting a matrix.

(a) Develop an O(n logn)-time CREW-PRAM algorithm to implement the above matrix-inversion method.

Is your algorithm optimal? (6 + 2)

Solution Here is a WT-level presentation of the algorithm.

Initialization

1. For i, j ∈ {1,2,3, . . . ,n}, pardo: Set bi, j :=

{

1 if i = j,

0 if i 6= j.

Row-reduction loop

2. For i = 1,2,3, . . . ,n, do:

(a) Find one k ∈ {i, i+1, i+2, . . . ,n} such that ak,i 6= 0 (see below).

(b) If k 6= i, for all j = 1,2,3, . . . ,n, pardo:

Swap ai, j with ak, j, and bi, j with bk, j.

(c) For j ∈ {1,2,3, . . . ,n}, pardo:

Divide ai, j by ai,i, and bi, j by ai,i.

(d) For k ∈ {1,2,3, . . . ,n} with k 6= i and ak,i 6= 0, and for j ∈ {1,2,3, . . . ,n}, pardo:

Subtract ak,iai, j from ak, j, and ak,ibi, j from bk, j.

It remains to elaborate how Step 2(a) can be implemented. Use an array U [i−1 . . .n] initialized to U [i−1] = 0,

and Uk =

{

0 if ak,i = 0

1 if ak,i 6= 0
for i 6 k 6 n. Compute the prefix sums of U in an array V . Identify k in parallel as

the index k ∈ {i, i+1, i+2, . . . ,n} such that V [k−1] = 0 and V [k] = 1. Since A is invertible, this k must exist.

Also, k is uniquely identified, so concurrent write is not needed.

Parallel running time

Step 1 takes O(1) time. For each i in the row-reduction loop, Step (a) takes O(logn) time, whereas Steps (b)–(d)

take O(1) time. Since the row-reduction loop (Step 2) is sequential, the total running time is O(n logn).

Optimality

We have T ∗(n) = Θ(n3). Step 1 requires Θ(n2) effort. For each i in the row-reduction loop, Step (a) can be

implemented so as to perform only O(n) work, whereas Steps (b) and (c) do O(n) work, and Step (d) does

O(n2) work. Thus, the overall row-reduction process makes O(n3) work.

Therefore, this algorithm is optimal.

— Page 1 of 6 —

(b) If you are given a CRCW PRAM, how can you improve the running time to O(n)? Mention which type

of CRCW PRAM you use (only common, priority and arbitrary variants are allowed). Is your improved

algorithm optimal? (4 + 2 + 2)

Solution We can indeed use any k with ak,i 6= 0 in Step 2(a) as the pivot (assuming that floating-point approximation

errors and the possible instability of the algorithm are not an issue). So whenever ak,i 6= 0, attempt a concurrent

write of k. A priority-CRCW PRAM succeeds is writing the first such k, whereas an arbitrary-CRCW PRAM

writes any k with ak,i 6= 0. So Step 2(a) now runs in O(1) time, and the running time of the overall algorithm

reduces to O(n).

The modified Step 2(a) still requires O(n) work, so the total work done by the modified algorithm remains the

same, namely, O(n3), that is, this CRCW PRAM algorithm is optimal too.

(c) What are the optimal numbers of processors for your algorithms of Part (a) and Part (b)? (2 + 2)

Solution Let us use the formula popt = Θ(T ∗(n)/T (n)) to obtain the optimal number of processors in each case.

Part (a): popt = Θ(n2

logn
).

Part (b): popt = Θ(n2).

— Page 2 of 6 —

2. The parallel algorithms of Exercise 1 do not run in polylogarithmic time. If it is given that A is a lower

triangular1 invertible n×n matrix with real-valued entries, develop a polylogarithmic-time CREW-PRAM

algorithm to invert A. Deduce the running time and the work done by your algorithm. (7 + 3)

(Hint: Break each of A and A−1 into four n
2
× n

2
blocks, and use the fact that A−1 is again lower triangular.)

Solution Write A =

(

A11 0

A21 A22

)

and B = A−1 =

(

B11 0

B21 B22

)

, where each Ai j and each Bi j are n
2
× n

2
blocks. Since

AB = In, we have A11B11 = In/2, A21B11+A22B21 = 0, and A22B22 = In/2. This, in turn, implies that B11 = A−1
11 ,

B22 = A−1
22 , and B21 =−A−1

22 A21A−1
11 . Since A11 and A22 are again lower triangular, we recursively compute their

inverses in parallel. Subsequently, B21 can be computed by two multiplications of n
2
× n

2
matrices. This can be

done in O(logn) time using O(n3) work. This implies that

T (n) = T (n/2)+O(logn),

W (n) = 2W (n/2)+O(n3).

By the master theorem of divide-and-conquer recurrences, we therefore have:

T (n) = O(log2 n),

W (n) = O(n3).

1A square matrix is called lower triangular if all the entries above its main diagonal are zero. The main diagonal of an invertible

lower triangular matrix must consist of non-zero entries only.

— Page 3 of 6 —

3. An array A of n bits consists of n0 zero bits followed by n1 one bits (so n = n0 +n1). For simplicity, assume

that n0,n1 > 0, and that n is a perfect fourth power, so you can write n = s2 = t4 for some positive integers

s, t. In the following two parts, develop EREW-PRAM algorithms to compute the counts n0 and n1.

(a) If only s =
√

n processors are available, solve the problem in O(1) time.2 (5)

Solution Since n1 = n−n0, it suffices to compute n0 only.

Break A into s chunks each of size s. Call the i-th chunk Ai. Perform the following steps.

1. For i = 1,2,3, . . . ,s−1, pardo:

If the last bit of Ai is zero, and the first bit of Ai+1 is one, return n0 = is.

2. For i = 1,2,3, . . . ,s, pardo:

If the first bit of Ai is zero, and the last bit of Ai is one, record this i (this happens for a unique i).

3. For j = 1,2,3, . . . ,s−1 and for the recorded i, pardo:

If the j-th bit of Ai is zero, and the (j+1)-st bit of Ai is one, return n0 = (i−1)s+ j.

(b) If only t = 4
√

n processors are available, solve the problem again in O(1) time. (5)

Solution We repeatedly use partitioning of A until its size reduces to t. We use steps analogous to those in Part (a).

Break A into t chunks each of size t3 = n3/4. Run (the equivalent of) Step 1 for these chunks. If n0 is found, we

are done. Otherwise, we confine the search to a single chunk B of size t3, discovered by running Step 2.

Break B into t subchunks each of size t2. If Step 1 succeeds on B, we are done, else the search is now restricted

to one subchunk C of size t2, again identified by running Step 2.

Finally, break C into t chunks each of size t, and carry out the three steps of Part (a).

Errata: These results pertain to the CREW PRAM model. My error (What is it?) was pointed out by

Sumeet Shirgure.

2An algorithm for Part (b) can solve Part (a) by keeping s− t processors idle. Here, you are required to utilize all the available

processors effectively. Indeed, the work done by your algorithms for the two parts should be Θ(s) and Θ(t), respectively.

— Page 4 of 6 —

4. [Counting sort] Let A be an array of n integers, each in the range 1,2,3, . . . ,k. It is given that k = O(logn).
Propose an optimal O(logn)-time CREW-PRAM algorithm to sort A. The sorted output is to be written in a

separate array B. Your algorithm should be stable, that is, equal keys preserve the order in B as they appear

in A (this matters if the elements of A contain satellite data other than the keys in the range 1,2,3, . . . ,k). (10)

Solution We can compute the prefix sums for each key 1,2,3, . . . ,k, and subsequently relocate the elements of A to

appropriate locations in B. This approach takes O(logn) time, but does O(nk) = O(n logn) work. In order to

reduce the work to O(n) (this is optimal since sequential counting sort runs in O(n+ k) = O(n) time), we use

the ideas of accelerated cascading and partitioning.

1. Let m = ⌈logn⌉. Partition A into chunks A1,A2,A3, . . . ,An′ of size m, where n′ = ⌈n/m⌉ (the last chunk

may contain less than m elements). In the rest of this algorithm, we use i to denote a chunk number

(1 6 i 6 n′), l to denote a position in a chunk (1 6 l 6 m), j to denote a key (1 6 j 6 k), and t to denote

a position in A (1 6 t 6 n).

2. For i = 1,2,3, . . . ,n′, pardo:

(a) Use the sequential stable counting sort algorithm to sort Ai.

(b) As a byproduct, we get the counts Ci, j of the keys j ∈ {1,2,3, . . . ,k} in the chunk Ai.

(c) Set p = 0 (the previous key seen).

(d) For l = 1,2,3, . . . ,m, do:

If (Ai[l] = p), set Ui,l =Ui,l−1 +1, else set Ui,l = 1 and p = Ai[l].

3. For j = 1,2,3, . . . ,k, pardo:

(a) Compute the prefix sums of the n′ counts C1, j,C2, j,C3, j, . . . ,Cn′, j in an array D j.

(b) Also take D j[0] = 0.

4. Compute the prefix sums of D1[n
′],D2[n

′],D3[n
′], . . . ,Dk[n

′] in an array E. Also take E[0] = 0.

5. For t = 1,2,3, . . . ,n, pardo:

(a) Compute the index i of the chunk Ai, to which at belongs (in fact, i = 1+ ⌊(t −1)/m⌋).

(b) Also compute the position l of at in Ai (in fact, l = t − (i−1)m).

(c) Set B[E[at −1]+Dat
[i−1]+Ui,l] = at .

Let us now enumerate the running times and the works done for the individual steps.

Step Parallel running time Work done

Step 1 (computation of m and n′) O(1) O(1)
Steps 2(a),(b) for each i O(m+ k) = O(logn) O(m+ k) = O(logn)
Steps 2(c),(d) for each i O(m) = O(logn) O(m) = O(logn)

Step 2 (total) O(logn) O(n′ logn) = O(n)
Step 3 (total) O(logn′) = O(logn) O(kn′) = O(n)
Step 4 (total) O(logk) = O(log logn) O(k) = O(logn)
Step 5 (total) O(1) O(n)

— Page 5 of 6 —

5. Let C be an arithmetic circuit given by a sequence (h1,h2,h3, . . . ,hn), where each hi is one of the following:

(i) a small constant integer (positive/negative/zero) [input], (ii) hi = h j +hk for some j,k < i [addition gate],

(iii) hi = h j − hk for some j,k < i [subtraction gate], (iv) hi = h jhk for some j,k < i [multiplication gate].

Your task is to determine whether the output hn of the arithmetic circuit C is zero or non-zero.

(a) Prove that this problem is P-Complete. (7)

Solution A given arithmetic circuit can be evaluated in linear time, so ARITHMETIC CIRCUIT is in P. We now reduce

CVP to ARITHMETIC CIRCUIT. Let (g1,g2,g3, . . . ,gn) be an instance of CVP. The reduced instance contains

the corresponding values h1,h2,h3, . . . ,hn along with some new variables.

If gi is an input, take hi equal to the value of gi (zero or one, which are small integers).

If gi is an AND gate, say, gi = g j ∧gk for some j,k < i, take hi = h jhk.

If gi is an OR gate, say, gi = g j ∨gk for some j,k < i, take hi = h j +hk −h jhk. This construction requires some

intermediate arithmetic gates. For example, we can realize this as yi = h j +hk, zi = h jhk, and hi = yi − zi.

If gi is a NOT gate, say, gi = g′j for some j < i, we take hi = 1− h j. This calls for the introduction of a new

input whose value is 1 and a subtraction gate: wi = 1 and hi = wi −h j.

Let gn be the output of the CVP circuit. Then, hn is the output of the converted arithmetic circuit. The

construction ensures that hn evaluates to the same value (zero or one) as gn.

Clearly, this reduction can be done by an NC algorithm.

(b) Why cannot you use the polylogarithmic-time raking-based tree-contraction algorithm to evaluate an

arithmetic circuit? (3)

Solution The raking-based tree-contraction algorithm can process an expression that can be represented as a binary tree.

In such a tree, the fan-out of each non-root node is one (that is, an expression evaluated at a non-root node is

used exactly once). An instance of ARITHMETIC CIRCUIT may have intermediate values of fan-out larger

than one, and if so, this circuit cannot be represented by a binary tree.

— Page 6 of 6 —

Use this space for leftover answers and rough work

— Additional Page 7 —

Use this space for leftover answers and rough work

— Additional Page 8 —

Use this space for leftover answers and rough work

— Additional Page 9 —

Use this space for leftover answers and rough work

— Additional Page 10 —

