
CS60026 Parallel and Distributed Algorithms, Autumn 2018–2019

Class Test

05–November–2018 06:15–07:15 pm Maximum marks: 20

Roll No: Name:

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

If you use any algorithm/result/formula covered in the class, just mention it, do not elaborate.

The nodes of a binary tree T are numbered 1,2,3, . . . ,n. Assume that n > 2. The tree is presented to you

by two arrays L[ ] and R[ ], where for each v ∈ {1,2,3, . . . ,n}, the array element L[v] (resp. R[v]) denotes the

left (resp. right) child of v. The following figure gives an example for n = 12.
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(a) A binary tree (b) Its child−pointer representation

Given n, L[ ], and R[ ] only, develop CREW/EREW PRAM algorithms for the following problems. In this

question paper, you may assume that generalized prefix sums on a single (not multiple) linked lists can be

computed in logarithmic time using linear work.

1. Prepare the parent array P[ ] of size n such that for each v ∈ {1,2,3, . . . ,n}, the element P[v] stores the parent

of v in T (or 0 is v is the root of T ). Your algorithm should take O(1) time and do O(n) work. (5)

Solution 1. For v = 1,2,3, . . . ,n, pardo:

Initialize P[v] = 0.

2. For v = 1,2,3, . . . ,n, pardo:

(a) If L[v] 6= 0, set P[L[v]] = v.

(b) If R[v] 6= 0, set P[R[v]] = v.

2. An Euler tour in T replaces each undirected edge (u,v) of T by two directed edges (u,v) and (v,u), and

specifies a successor of each directed edge on the tour. Propose an O(1)-time O(n)-work algorithm for

generating an Euler tour on T presented to you by n, L[ ] and R[ ] only. If needed, you may additionally use

the parent array P[ ] computed in Part 1. (5)
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Solution Let us order the neighbors of a node v in T as follows: L[v],R[v],P[v]. Some of these neighbors may be non-

existing. Using this ordering, a linked-list-based representation of T , suitable for computing the Eulerian tour on

T , can be prepared in O(1) time using O(n) work. However, these linked lists need not be explicitly computed.

We can keep the ordering in our head while designing the following algorithm. Let (u,v) be a directed edge in

T . We compute its successor of S(u,v) in the Eulerian tour as follows.

Case 1: v is a child of u (left or right).

If v has a left child w, set S(u,v) = (v,w), else if v has a right child w, set S(u,v) = (v,w), else set S(u,v) = (v,u).

Case 2: u is the left child of v.

If v has a right child w, set S(u,v) = (v,w), else if v has a parent w, set S(u,v) = (v,w), else (v is the root having

only the left child), set S(u,v) = (v,u).

Case 3: u is the right child of v.

If v has a parent w, set S(u,v) = (v,w), else (v is the root) if v has a left child w, set S(u,v) = (v,w), else (v is

the root having only the right child), set S(u,v) = (v,u).

In each case, the successor of each edge can be computed in O(1) time from the arrays L[ ],R[ ],P[ ]. Moreover,

there are 2(n−1) directed edges in T , so the total work done is Θ(n).

3. Propose an O(logn)-time O(n)-work algorithm to compute the height of T . (5)

Solution The root of T is the unique node r with P[r] = 0, and can be identified in O(1) time using O(n) work by making

a parallel search in the parent array P[ ]. If r has a right child, let w be this child, else let w be the left child of r.

Convert the Euler tour to a linked list by setting the successor of (w,r) to NULL. In this and the next parts, we

assume that the Euler tour is converted to a linked list in this manner.
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Solution [continued] In the class, we have seen how to compute the levels of the nodes in a tree. This consists of setting

an array U indexed by the directed edges of T as U [P[v],v] = 1 and U [v,P[v]] = −1 for every non-root node

v of T , followed by computing the generalized prefix sum of U [ ] in an array V [ ] with respect to the Eulerian

linked list. This can be done in O(logn) time using O(n) work.

The height of T is the maximum level of a node. The maximum of V [ ] can be computed by the balanced-

binary-tree method in O(logn) time using O(n) work.

4. Propose an O(logn)-time O(n)-work algorithm to compute the inorder numbering of each vertex of T . You

should prepare an array IN[1 . . .n] such that IN[v] is the one-based inorder number of v. In the example on the

first page, the inorder numbers 1,2,3, . . . ,12 go to the vertices 11,7,9,12,6,10,4,2,8,1,5,3, respectively. (5)

Solution Let v be a node in T . The relevant edge ε(v) of v is defined as follows. If v has a left child w, set ε(v) = (w,v),
else if v has a parent u (that is, v is not the root), take ε(v) = (u,v). If the root r has only the right child, then

ε(r) is not defined. We will handle this case separately.

Prepare an array indexed by the directed edges e of T as follows. If e= ε(v) for some vertex v, set U [e] = 1, else

set U [e] = 0. Compute the generalized prefix sum of U [ ] with respect to the Eulerian linked list, in an array V [ ].
If ε(r) is defined, then IN[v] = V [ε(v)] for all vertices v of T . If ε(r) is not defined, then IN[v] = 1+V [ε(v)]
for all non-root vertices v of T , and IN[r] = 1.

Remark: The special case of ε(r) being not defined can be eliminated as follows. Add a new root r
′ to T , and

make the old root r the left child of r
′. Call the resulting augmented tree T

′. The L,R,P arrays and the Eulerian

linked list for T can be converted to those for T
′ in constant time (sequentially, but tell how). Now, since r has

a parent, all cases (r has a left child or not) can be treated uniformly.
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Use this space for leftover answers and rough work


