
INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR

Stamp / Signature of the Invigilator

EXAMINATION (Mid Semester) SEMESTER (Autumn)

Roll Number Section Name

Subject Number C S 6 0 0 2 6 Subject Name Parallel and Distributed Algorithms

Department / Center of the Student Additional sheets

Important Instructions and Guidelines for Students

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.

2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the

subject you are taking examination.

4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed

by the paper-setter.

5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However,

exchange of these items or any other papers (including question papers) is not permitted.

6. Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough

work. Report to the invigilator if the answer script has torn or distorted page(s).

7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the

desk for checking by the invigilator.

8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence

from the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly

prohibited inside the Examination Hall.

9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not

allowed to take away the answer script with you. After the completion of the examination, do not leave the seat until

the invigilators collect all the answer scripts.

10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or

exchanging information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and

do not indulge in unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

To be filled in by the examiner

Question Number 1 2 3 4 5 6 7 8 9 10 Total

Marks Obtained

Marks obtained (in words) Signature of the Examiner Signature of the Scrutineer

CS60026 Parallel and Distributed Algorithms, Autumn 2017–2018

Mid-Semester Test

19–September–2017 CSE-107/108/119, 09:00–11:00am Maximum marks: 50

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

If you use any algorithm/result/formula covered in the class, just mention it, do not elaborate.

1. We want to compute the dot product of two n-dimensional vectors u=(u1,u2, . . . ,un) and v=(v1,v2, . . . ,vn),
defined as u ·v = u1v1 +u2v2 + · · ·+unvn.

(a) Let m =
√

n be an integer. You are given an m×m mesh with the processors numbered P1,P2, . . . ,Pn in

the row-major order. Suppose that the processor Pi is initially given the values ui and vi, and the final result

is to be read from processor Pn. Design an O(
√

n)-time algorithm to solve the problem in this setting. (10)

Solution Step 1: Each processor Pi computes its contribution zi = uivi in parallel. This takes O(1) time.

Step 2: In this step, the rows run in parallel. Each node sends its partial sum to its right neighbor. At the end of

m−1 transfers of partial sums, the rightmost node in the k-th row stores Wk = z(m−1)k+1+z(m−1)k+2+ · · ·+zmk.

This step takes O(m) = O(
√

n) running time.

Step 3: Now, the partial sums based on W1,W2, . . . ,Wm are transferred vertically downward by the rightmost

nodes in the m rows. After O(m) =O(
√

n) time, the processor Pn computes the value u ·v=W1+W2+ · · ·+Wm.

— Page 1 of 5 —

(b) Recall that the cost of a parallel algorithm is the product of its parallel running time with the number

of processors used. The cost of the algorithm of Part (a) is O(
√

n×m2) = O(n
3
2), which is not cost-optimal,

since an optimal sequential algorithm requires only O(n) operations. Establish that the dot product u ·v can

be computed by a cost-optimal parallel algorithm in O(n
1
3) time on an n

1
3 ×n

1
3 mesh. (10)

Solution For simplicity, let l = n
1
3 be an integer. The l2 processors in the l × l mesh are numbered in the row-major

order. Each processor Pi is given l pairs (u j,v j) for j = (i− 1)l + 1,(i− 1)l + 2, . . . , il. The processors run

in parallel, with each processor Pi sequentially computing the l-fold sum Zi = ∑
il
j=(i−1)l+1 u jv j for the (u j,v j)

pairs assigned to it. This takes O(l) running time.

After this, the processors send the partial sums, first row-wise, and then in the last column as in Steps 2 and 3

of Part (a). Since the mesh is of dimension l × l, this transfer culminates in the final computation of u ·v in Pl2

in O(l) time.

Thus, the cost of this algorithm is O(l × l2) = O(l3) = O(n), which is optimal.

— Page 2 of 5 —

2. Let A = (a1,a2, . . . ,an) be a sorted array that may contain duplicate entries. Your task is to prepare an

output sorted array B composed of the elements of A but with all the duplicates removed. For example, if

A = (1,2,2,6,8,8,8,12,15,15,20), the output should be B = (1,2,6,8,12,15,20). Develop an O(logn)-
time O(n)-work PRAM algorithm to solve this problem. What PRAM type does you algorithm use? (8+2)

Solution Step 1: We use an index array IDX , first to note the positions of the duplicate entries.

for i = 1,2, . . . ,n pardo {

if (i = 1), set IDX [i] = 1

else if (ai 6= ai−1), set IDX [i] = 1

else set IDX [i] = 0

}

This step takes O(1) time and does O(n) work.

Step 2: We do a parallel prefix computation on the array IDX . Suppose that the prefixes are stored in the array

IDX itself. This step can be finished in O(logn) time using O(n) work.

Step 3: If we use a CREW PRAM, the write-back to B may proceed as follows.

for i = 1,2, . . . ,n pardo {

if (i = 1) or (ai 6= ai−1), set B[IDX [i]] = ai

}

On a common CRCW PRAM, the write-back can proceed unconditionally.

for i = 1,2, . . . ,n pardo {

set B[IDX [i]] = ai

}

In either case, Step 3 uses O(1) parallel running time and O(n) work.

— Page 3 of 5 —

3. You are given a polynomial f (x) = anxn + an−1xn−1 + · · ·+ a1x+ a0, and a value of x. Your problem is to

evaluate f at the given point x. Assume that you have a p-processor CREW PRAM with p 6 n. Develop a

parallel algorithm to solve the problem in O(n
p
+ logn) time on your PRAM. (Hint: Use Horner’s rule and

the WT scheduling principle.) (10)

Solution Use Horner’s rule to write the polynomial expression as

f (x) = (· · ·(((anx+an−1)x+an−2)x+an−3)x+ · · ·+a1)x+a0.

This computation can be expressed as a binary arithmetic expression tree E, in which each internal node stands

for either a multiplication or an addition operation. The total number of nodes in E is N = 4n+1 = Θ(n).

The parallel algorithm based on raking can evaluate the tree in T (N) = O(logN) time using W (N) = O(N)
work (operations).

By the WT scheduling principle, this algorithm can be scheduled to p 6 n < N processors to run in time

O(W (N)
p

+T (n)). Since N = Θ(n), this running time is O(n
p
+ logn).

— Page 4 of 5 —

4. Let A = (a1,a2, . . . ,an) be an array of n integers, among which most are zero. Your task is to locate the first

index k for which ak 6= 0 (assume that such a k exists). You are given a common CRCW PRAM. Propose

an O(1)-time O(n)-work algorithm for solving this problem on your PRAM. (Hint: First solve the problem

for arrays of size
√

n.) (10)

Solution First, let us solve this problem for an array X of size m=
√

n (assumed to be an integer). Let X = (x1,x2, . . . ,xm)
be an integer array with at least one non-zero entry. The following subroutine identifies the index of the first

non-zero entry in X .

Subroutine S

if (x1 6= 0) return 1

for i = 2,3,4, . . . ,m and for j = 1,2,3, . . . , i−1 pardo {

if (xi 6= 0) and (x j = 0), set yi, j = 1, else set yi, j = 0.

}

for i = 2,3,4, . . . ,m, initialize zi = 0

for i = 2,3,4, . . . ,m and for j = 1,2,3, . . . , i−1 {

concurrently write yi, j to zi

}

The concurrent write of 1 succeeds only at the leftmost index k of a non-zero entry in X . The running time of

this subroutine is O(1), and the work done is O(m2) = O(n).

Let us now solve the original problem for A. We break A into m blocks, each of size m.

for i = 1,2,3, . . . ,m, pardo xi = 1.

for i = 1,2,3, . . . ,m and for j = 1,2,3, . . . ,m {

Concurrently write to xi the value 0 if a(i−1)m+ j = 0 or the value 1 if a(i−1)m+ j 6= 0.

}

Call Subroutine S on X to get the leftmost k with xk 6= 0.

Call Subroutine S on A[(k−1)m+1 . . .km] to get the leftmost l with a(k−1)m+l 6= 0.

return (k−1)m+ l

If the i-th block of A of size m contains only zeros, the concurrent write of 0 at xi succeeds, otherwise xi

continues to store 1. The first subroutine call identifies the block of A which contains the leftmost non-zero

entry. We then search for the leftmost non-zero entry in that block of A.

The initialization of X and the concurrent write in it take O(1) time and uses O(n) work. The two calls of the

subroutine S are on arrays of size
√

n, so each finishes in O(1) time after doing O(n) work.

— Page 5 of 5 —

Use this space for leftover answers and rough work

Use this space for leftover answers and rough work

Use this space for leftover answers and rough work

