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CS60026 Parallel and Distributed Algorithms, Autumn 2017–2018

Mid-Semester Test

19–September–2017 CSE-107/108/119, 09:00–11:00am Maximum marks: 50

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

If you use any algorithm/result/formula covered in the class, just mention it, do not elaborate.

1. We want to compute the dot product of two n-dimensional vectors u=(u1,u2, . . . ,un) and v=(v1,v2, . . . ,vn),
defined as u ·v = u1v1 +u2v2 + · · ·+unvn.

(a) Let m =
√

n be an integer. You are given an m×m mesh with the processors numbered P1,P2, . . . ,Pn in

the row-major order. Suppose that the processor Pi is initially given the values ui and vi, and the final result

is to be read from processor Pn. Design an O(
√

n)-time algorithm to solve the problem in this setting. (10)

Solution Step 1: Each processor Pi computes its contribution zi = uivi in parallel. This takes O(1) time.

Step 2: In this step, the rows run in parallel. Each node sends its partial sum to its right neighbor. At the end of

m−1 transfers of partial sums, the rightmost node in the k-th row stores Wk = z(m−1)k+1+z(m−1)k+2+ · · ·+zmk.

This step takes O(m) = O(
√

n) running time.

Step 3: Now, the partial sums based on W1,W2, . . . ,Wm are transferred vertically downward by the rightmost

nodes in the m rows. After O(m) =O(
√

n) time, the processor Pn computes the value u ·v=W1+W2+ · · ·+Wm.
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(b) Recall that the cost of a parallel algorithm is the product of its parallel running time with the number

of processors used. The cost of the algorithm of Part (a) is O(
√

n×m2) = O(n
3
2 ), which is not cost-optimal,

since an optimal sequential algorithm requires only O(n) operations. Establish that the dot product u ·v can

be computed by a cost-optimal parallel algorithm in O(n
1
3 ) time on an n

1
3 ×n

1
3 mesh. (10)

Solution For simplicity, let l = n
1
3 be an integer. The l2 processors in the l × l mesh are numbered in the row-major

order. Each processor Pi is given l pairs (u j,v j) for j = (i− 1)l + 1,(i− 1)l + 2, . . . , il. The processors run

in parallel, with each processor Pi sequentially computing the l-fold sum Zi = ∑
il
j=(i−1)l+1 u jv j for the (u j,v j)

pairs assigned to it. This takes O(l) running time.

After this, the processors send the partial sums, first row-wise, and then in the last column as in Steps 2 and 3

of Part (a). Since the mesh is of dimension l × l, this transfer culminates in the final computation of u ·v in Pl2

in O(l) time.

Thus, the cost of this algorithm is O(l × l2) = O(l3) = O(n), which is optimal.
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2. Let A = (a1,a2, . . . ,an) be a sorted array that may contain duplicate entries. Your task is to prepare an

output sorted array B composed of the elements of A but with all the duplicates removed. For example, if

A = (1,2,2,6,8,8,8,12,15,15,20), the output should be B = (1,2,6,8,12,15,20). Develop an O(logn)-
time O(n)-work PRAM algorithm to solve this problem. What PRAM type does you algorithm use? (8+2)

Solution Step 1: We use an index array IDX , first to note the positions of the duplicate entries.

for i = 1,2, . . . ,n pardo {

if (i = 1), set IDX [i] = 1

else if (ai 6= ai−1), set IDX [i] = 1

else set IDX [i] = 0

}

This step takes O(1) time and does O(n) work.

Step 2: We do a parallel prefix computation on the array IDX . Suppose that the prefixes are stored in the array

IDX itself. This step can be finished in O(logn) time using O(n) work.

Step 3: If we use a CREW PRAM, the write-back to B may proceed as follows.

for i = 1,2, . . . ,n pardo {

if (i = 1) or (ai 6= ai−1), set B[IDX [i]] = ai

}

On a common CRCW PRAM, the write-back can proceed unconditionally.

for i = 1,2, . . . ,n pardo {

set B[IDX [i]] = ai

}

In either case, Step 3 uses O(1) parallel running time and O(n) work.
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3. You are given a polynomial f (x) = anxn + an−1xn−1 + · · ·+ a1x+ a0, and a value of x. Your problem is to

evaluate f at the given point x. Assume that you have a p-processor CREW PRAM with p 6 n. Develop a

parallel algorithm to solve the problem in O( n
p
+ logn) time on your PRAM. (Hint: Use Horner’s rule and

the WT scheduling principle.) (10)

Solution Use Horner’s rule to write the polynomial expression as

f (x) = (· · ·(((anx+an−1)x+an−2)x+an−3)x+ · · ·+a1)x+a0.

This computation can be expressed as a binary arithmetic expression tree E, in which each internal node stands

for either a multiplication or an addition operation. The total number of nodes in E is N = 4n+1 = Θ(n).

The parallel algorithm based on raking can evaluate the tree in T (N) = O(logN) time using W (N) = O(N)
work (operations).

By the WT scheduling principle, this algorithm can be scheduled to p 6 n < N processors to run in time

O(W (N)
p

+T (n)). Since N = Θ(n), this running time is O( n
p
+ logn).
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4. Let A = (a1,a2, . . . ,an) be an array of n integers, among which most are zero. Your task is to locate the first

index k for which ak 6= 0 (assume that such a k exists). You are given a common CRCW PRAM. Propose

an O(1)-time O(n)-work algorithm for solving this problem on your PRAM. (Hint: First solve the problem

for arrays of size
√

n.) (10)

Solution First, let us solve this problem for an array X of size m=
√

n (assumed to be an integer). Let X = (x1,x2, . . . ,xm)
be an integer array with at least one non-zero entry. The following subroutine identifies the index of the first

non-zero entry in X .

Subroutine S

if (x1 6= 0) return 1

for i = 2,3,4, . . . ,m and for j = 1,2,3, . . . , i−1 pardo {

if (xi 6= 0) and (x j = 0), set yi, j = 1, else set yi, j = 0.

}

for i = 2,3,4, . . . ,m, initialize zi = 0

for i = 2,3,4, . . . ,m and for j = 1,2,3, . . . , i−1 {

concurrently write yi, j to zi

}

The concurrent write of 1 succeeds only at the leftmost index k of a non-zero entry in X . The running time of

this subroutine is O(1), and the work done is O(m2) = O(n).

Let us now solve the original problem for A. We break A into m blocks, each of size m.

for i = 1,2,3, . . . ,m, pardo xi = 1.

for i = 1,2,3, . . . ,m and for j = 1,2,3, . . . ,m {

Concurrently write to xi the value 0 if a(i−1)m+ j = 0 or the value 1 if a(i−1)m+ j 6= 0.

}

Call Subroutine S on X to get the leftmost k with xk 6= 0.

Call Subroutine S on A[(k−1)m+1 . . .km] to get the leftmost l with a(k−1)m+l 6= 0.

return (k−1)m+ l

If the i-th block of A of size m contains only zeros, the concurrent write of 0 at xi succeeds, otherwise xi

continues to store 1. The first subroutine call identifies the block of A which contains the leftmost non-zero

entry. We then search for the leftmost non-zero entry in that block of A.

The initialization of X and the concurrent write in it take O(1) time and uses O(n) work. The two calls of the

subroutine S are on arrays of size
√

n, so each finishes in O(1) time after doing O(n) work.
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