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[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

If you use any algorithm/result/formula covered in the class, just mention it, do not elaborate.

1. Suppose that a parallel algorithm for CREW PRAMs runs in T (n) time and does W (n) work. Prove that a

p-processor EREW PRAM can run the same algorithm in O

(

(

W (n)
p

+T (n)
)

log p

)

time. (10)

Solution By the WT scheduling principle, the algorithm runs in
W (n)

p
+T (n) time on a p-processor CREW PRAM. In

order to run the algorithm on a p-processor EREW PRAM, we need to handle the concurrent read instructions.

The number r of processors that attempt to read concurrently from a location x at a point of time is 6 p. Let us

see how an array X = (x1,x2, . . . ,xr) with all xi = x can be prepared in O(logr) (that is, O(log p)) time without

using concurrent reads. The following pseudocode assumes for simplicity that r = 2t .

Processor 1 reads x and copies the value to x1.

For i = 0,1,2, . . . , t −1, repeat:

For j = 1,2, . . . ,2i, pardo:

Processor j copies x j to x2i+ j.

After this, an r-way concurrent reading of x is replaced by exclusive reading of x1,x2, . . . ,xr by r processors

from the different locations in X . Since the maximum number of concurrent reads is
W (n)

p
+ T (n) and each

concurrent read expands to O(log p) time, the result follows.



2. Let A = (a1,a2, . . . ,an) be a sorted array of n integers. You are given an EREW PRAM with p processors

and an (arbitrary) array B = (b1,b2, . . . ,bp) of integers. The task of the i-th processor is to search for bi

in A, and to write the result ci (true/false) in an array C = (c1,c2, . . . ,cp). Assume that p = O(logn), and

that n is a power of 2. Exercise 1 leads to an O(logn log logn)-time solution to this problem. Propose an

O(logn)-time algorithm for solving this problem. (10)

Solution The idea is to use pipelining. Take n = 2t . Let us look into the array locations accessed during different

iterations of the binary-search algorithm. In the first iteration, the middle element at index 2t−1 is accessed.

In the second iteration, the element at one of the indices 2t−2 and 3× 2t−2 is accessed. In the third iteration,

the element at one of the indices 2t−3, 3×2t−3, 5×2t−3 and 7×2t−3 is accessed, and so on. Evidently, there

cannot be any conflict between the reads of two different iterations. Therefore if the i-th processor starts the

binary search for bi in A at time i, there will not be any concurrent read requests, and the processors finish all

of the p searches in 6 p+ logn time. Since p = O(logn), this time is O(logn).
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3. Propose an O(logn)-time algorithm to sort an array of n integers on a priority CRCW PRAM. Do not use

the pipelined merge sort algorithm for CREW PRAMs, partially covered in the class. (10)

Solution Let X and Y be two sorted arrays of size m each. It suffices to show that Rank(X ;Y ) can be computed by a

priority CRCW PRAM in O(1) time. We use m2 processors indexed by the pair (i, j) ∈ {1,2, . . . ,m}2. The

processors are given priority based on the lexicographic ordering of the pairs (i, j) (or on the integer mi+ j).

Processor (i, j) is of higher priority than Processor (i′, j′) if (i, j) is lexicographically smaller than (i′, j′) (or

equivalently mi+ j < mi′+ j′). The following code snippet computes the ranks of all xi in Y in an array R.

For all i = 1,2, . . . ,m, pardo:

Initialize R[i] = m.

For all i = 1,2, . . . ,m and for all j = 1,2, . . . ,m, pardo:

If xi < y j, set R[i] = j−1. /* To be done by Processor (i, j) */

The initialization step does not require any concurrent writes. So let us look at the second parallel step. Fix

some i ∈ {1,2, . . . ,m}. Only the processors (i, j) with j ∈ {1,2, . . . ,m} may attempt to write to R[i]. Let

Rank(xi;Y ) = r, that is, y1 < y2 < · · · < yr < xi < yr+1 < yr+2 < · · · < ym. For j 6 r, the condition xi < y j

does not hold, and Processor (i, j) does not make an attempt to write to R[i]. The condition xi < y j holds for all

j = r+1,r+2, . . . ,m, and so all the processors (i, j) with j in this range attempt to write to R[i]. Among these,

Processor (r+1, j) has the highest priority, and succeeds in writing (r+1)−1 = r at R[i].

Since merging two arrays can be done in O(1) time, the running time of parallel merge sort on a priority CRCW

PRAM satisfies T (n) = T (n/2)+O(1) = O(logn).
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4. A sum CRCW PRAM resolves write conflicts by writing the sum of the values of all concurrent write

requests. Solve the following problem in O(1) time on a sum CRCW PRAM.

Let A = (a1,a2, . . . ,an) be an unsorted array of n = 2k integers. It is given that exactly half (that is, k) of

the elements of A are positive, and the remaining k elements are negative. The problem is to prepare an

array B consisting of all the elements of A such that the positive and negative elements of A are positioned

alternately in B, and B starts with a positive element. Your algorithm should preserve the order of the positive

and negative elements as they appear in A. For example, if A = (−7,2,−1,−9,1,4,−1,5), then B should be

(2,−7,1,−1,4,−9,5,−1). (10)

Solution Let X = (x1,x2, . . . ,xn) be an array of n integers. The following algorithm correctly computes the prefix sums

of X in an array XP = (xp1,xp2, . . . ,xpn) in O(1) time on a sum CRCW PRAM.

For i = 1,2, . . . ,n and for j = i, i+1, . . . ,n, pardo: Write xi to xp j.

Now, we solve the given problem. We use two arrays P and N to locate the positions of the positive and negative

elements of A. This can be done in O(1) time. We then compute the prefix sums of P and N in two arrays PP

and NP in O(1) time. Finally, guided by these prefix-sum arrays, we write appropriate elements of A to the

desired positions in B, again in O(1) time.

For i = 1,2, . . . ,n, pardo

If ai > 0, set P[i] = 1 and N[i] = 0, else set P[i] = 0 and N[i] = 1.

Compute in parallel the prefix sums of P in PP and of N in NP.

For i = 1,2, . . . ,n, pardo

If P[i] = 1, copy ai to B[2×PP[i]−1], else copy ai to B[2×NP[i]].
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5. Let V = {1,2,3, . . . ,n}, and D : V → V a function. We know that D defines a pseudoforest on V (that is, a

vertex-disjoint collection of pseudotrees, where a pseudotree is a rooted tree with an extra edge). Supplied

additionally as input, an integer key value K(i) for each Vertex i. Your task is to compute, for all i, the

smallest key value stored in the pseudotree that contains Vertex i. Propose an O(logn)-time algorithm for

solving this problem on a CREW PRAM (write the complete pseudocode of your algorithm). What is the

total work done by your algorithm? (10)

Solution We use the pointer jumping technique. We first copy the array D to an array P. The minimum for Vertex i is

stored in M(i).

For i = 1,2, . . . ,n, pardo:

Copy D(i) to P(i).
For i = 1,2, . . . ,n, pardo:

Initialize M(i) = K(i).
Repeat ⌈logn⌉ times:

If M(P(i))< M(i), set M(i) = M(P(i)).
Set P(i) = P(P(i)).

The total work done at this stage is O(n logn).

The above algorithm works on a pseudotree if and only if the minimum in the pseudotree lies on its cycle. There

is more to be done in order to make the idea work. This calls for O(n2) space and an additional O(n2) work.

Each vertex calculates the minimum of its children, and replaces its minimum by the child minimum if needed.

For i = 1,2, . . . ,n and for j = 1,2, . . . ,n pardo:

Set A(i, j) = ∞.

For j = 1,2, . . . ,n pardo:

If P( j) = i, set A(i, j) = M( j).
For each i = 1,2, . . . ,n, pardo:

Compute the minimum mi of A(i, j), j = 1,2, . . . ,n. /* O(logn) time on CREW PRAM */

If mi < M(i), set M(i) = mi.

Now, restore the original parent pointers, and do pointer jumping once more (another O(n logn) work).

For i = 1,2, . . . ,n, pardo:

Copy D(i) to P(i).
For i = 1,2, . . . ,n, pardo:

Repeat ⌈logn⌉ times:

If M(P(i))< M(i), set M(i) = M(P(i)).
Set P(i) = P(P(i)).
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6. The Linear Equalities (LE) problem is defined as follows. Let A be an m× n matrix with integer entries,

and b an m-dimensional (column) vector. The problem is to decide whether there exists an n-dimensional

vector x > 0 such that Ax = b. Prove that LE is P-Complete. (10)

Solution We can check the solvability of a system of linear equations in polynomial time by linear-algebra algorithms

(like Gaussian elimination). Therefore LE is in P.

In order to prove the P-hardness of LE, we use reduction from LI (Linear Inequalities) which has been proved

to be P-Complete. Let c1y1 + c2y2 + · · ·+ ckyk 6 dl be a linear inequality (an inequality in the input instance

of LI). We introduce a new variable zl (called a slack variable) to convert this inequality to the equality

c1y1 + c2y2 + · · ·+ ckyk + zl = dl along with the condition zl > 0. Clearly, all the inequalities can be converted

to equalities in O(1) parallel time, so the reduction algorithm is in NC.
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