CS60040 Parallel and Distributed Algorithms, Autumn 2017–2018

Class Test

15-November-2017

CSE 107/108, 11:00–12:00 hours

Maximum marks: 20

Roll no: _____ Name: _____

Write your answers in the question paper itself. Be brief and precise. Answer <u>all</u> questions. If you use any algorithm/result/formula covered in the class, just mention it, do not elaborate.

- 1. In this exercise, you work out a parallel implementation of the quick-sort algorithm on a CREW PRAM. Let $A = (a_1, a_2, ..., a_n)$ be an array of *n* integers, that we want to sort. We choose a_1 as the pivot for partitioning.
 - (a) Propose an $O(\log n)$ -time parallel partitioning algorithm.

(10)

Solution	1. Set the pivot: $p = a_1$.	/* O(1) time */
	2. For $i = 2, 3, 4,, n$ pardo:	/* O(1) time */
	(a) If $a_i \leq p$, set $LIDX[i] = 1$ and $RIDX[i] = 0$, (b) else set $LIDX[i] = 0$ and $RIDX[i] = 1$.	
	3. Compute the prefix sums of $LIDX[1n]$ in the same array.	/* O(log <i>n</i>) time */
	4. Compute the prefix sums of $RIDX[1n]$ in the same array.	/* O(log <i>n</i>) time */
	5. Set $n_1 = LIDX[n]$ and $n_2 = RIDX[n]$.	/* O(1) time */
	6. For $i = 2, 3, 4,, n$ pardo:	/* O(1) time */
	(a) If $a_i \leq p$, set $L[LIDX[i]] = a_i$, (b) else set $R[RIDX[i]] = a_i$.	
	7. For $i = 1, 2,, n_1$, pardo: Copy $L[i]$ to $A[i]$.	/* O(1) time */
	8. Set $A[n_1+1] = p$.	/* O(1) time */
	9. For $i = 1, 2,, n_2$, pardo: Copy $R[i]$ to $A[n_1 + 1 + i]$.	/* O(1) time */

(b) How do you handle the recursive calls?

Solution Run quick sort on $A[1...n_1]$ and $A[n_1+2...n_1+n_2+1]$ in parallel.

(c) Deduce the best-case and worst-case running times of this parallel quick-sort algorithm.

Solution Best-case: $T(n) \approx T(n/2) + O(\log n) = O(\log^2 n)$. Worst-case: $T(n) = T(n-1) + O(\log n) = O(n \log n)$.

(d) Propose a strategy to make the parallel quick sort run in worst-case $O(\log^2 n \log \log n)$ time. (4)

Solution We can solve the selection problem in A in $O(\log n \log \log n)$ time. Thus, we can choose the median as the pivot. This gives $T(n) \approx T(n/2) + O(\log n \log \log n) = O(\log^2 n \log \log n)$.

Note: Using only one iteration of the size-reduction loop in the selection algorithm, we can compute the median of medians in $O(\log n)$ time. If we use this element as the pivot, we have $T(n) \leq T(3n/4) + O(\log n)$. Although this is poorer than the best case, we still achieve $T(n) = O(\log^2 n)$, that is, we can force the parallel quick sort to run in worst-case $O(\log^2 n)$ time.

(4)