
CS60040 Parallel and Distributed Algorithms, Autumn 2017–2018

Class Test

15–November–2017 CSE 107/108, 11:00–12:00 hours Maximum marks: 20

Roll no: Name:

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

If you use any algorithm/result/formula covered in the class, just mention it, do not elaborate.

1. In this exercise, you work out a parallel implementation of the quick-sort algorithm on a CREW PRAM. Let

A = (a1,a2, . . . ,an) be an array of n integers, that we want to sort. We choose a1 as the pivot for partitioning.

(a) Propose an O(logn)-time parallel partitioning algorithm. (10)

Solution 1. Set the pivot: p = a1. /* O(1) time */

2. For i = 2,3,4, . . . ,n pardo: /* O(1) time */

(a) If ai 6 p, set LIDX [i] = 1 and RIDX [i] = 0,

(b) else set LIDX [i] = 0 and RIDX [i] = 1.

3. Compute the prefix sums of LIDX [1 . . .n] in the same array. /* O(logn) time */

4. Compute the prefix sums of RIDX [1 . . .n] in the same array. /* O(logn) time */

5. Set n1 = LIDX [n] and n2 = RIDX [n]. /* O(1) time */

6. For i = 2,3,4, . . . ,n pardo: /* O(1) time */

(a) If ai 6 p, set L[LIDX [i]] = ai,

(b) else set R[RIDX [i]] = ai.

7. For i = 1,2, . . . ,n1, pardo: Copy L[i] to A[i]. /* O(1) time */

8. Set A[n1 +1] = p. /* O(1) time */

9. For i = 1,2, . . . ,n2, pardo: Copy R[i] to A[n1 +1+ i]. /* O(1) time */

— Page 1 of 2 —



(b) How do you handle the recursive calls? (2)

Solution Run quick sort on A[1 . . .n1] and A[n1 +2 . . .n1 +n2 +1] in parallel.

(c) Deduce the best-case and worst-case running times of this parallel quick-sort algorithm. (4)

Solution Best-case: T (n)≈ T (n/2)+O(logn) = O(log2 n).

Worst-case: T (n) = T (n−1)+O(logn) = O(n logn).

(d) Propose a strategy to make the parallel quick sort run in worst-case O(log2 n log logn) time. (4)

Solution We can solve the selection problem in A in O(logn log logn) time. Thus, we can choose the median as the pivot.

This gives T (n)≈ T (n/2)+O(logn log logn) = O(log2 n log logn).

Note: Using only one iteration of the size-reduction loop in the selection algorithm, we can compute the median

of medians in O(logn) time. If we use this element as the pivot, we have T (n)6 T (3n/4)+O(logn). Although

this is poorer than the best case, we still achieve T (n) = O(log2 n), that is, we can force the parallel quick sort

to run in worst-case O(log2 n) time.

— Page 2 of 2 —


