
INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR

Stamp / Signature of the Invigilator

EXAMINATION (Mid Semester) SEMESTER (Spring)

Roll Number Section Name

Subject Number C S 3 1 2 0 2 Subject Name Operating Systems

Department / Center of the Student Additional sheets

Important Instructions and Guidelines for Students

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.

2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the

subject you are taking examination.

4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed

by the paper-setter.

5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However,

exchange of these items or any other papers (including question papers) is not permitted.

6. Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough

work. Report to the invigilator if the answer script has torn or distorted page(s).

7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the

desk for checking by the invigilator.

8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence

from the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly

prohibited inside the Examination Hall.

9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not

allowed to take away the answer script with you. After the completion of the examination, do not leave the seat until

the invigilators collect all the answer scripts.

10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or

exchanging information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and

do not indulge in unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

To be filled in by the examiner

Question Number 1 2 3 4 5 6 7 8 9 10 Total

Marks Obtained

Marks obtained (in words) Signature of the Examiner Signature of the Scrutineer

CS31202/CS30002 Operating Systems, Spring 2023–2024

Mid-Semester Test

21–February–2024 02:00pm–04:00pm Maximum marks: 40

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

Do not write anything on this page.

Questions start from the next page.

1. (a) Consider a multi-processor system with three processors CPU1, CPU2, and CPU3. All the three

processors share a common ready queue, and each processor internally runs its own scheduling algorithm.

Whenever appropriate (like a processor is free, or it is running a low-priority process), the internal scheduler

runs to schedule the next process from the common ready queue. As the internal scheduling algorithm,

CPU2 and CPU3 use round-robin scheduling with time quanta 3ms and 2ms, respectively, whereas CPU1

uses the preemptive priority scheduling algorithm. CPU1 considers the common ready queue as a priority

queue, whereas CPU2 and CPU3 considers this queue as a FIFO queue. If CPU1 runs a low-priority process,

and a high-priority process arrives, the priority scheduler of CPU1 suspends the currently running process,

and schedules the high-priority process (even if the other processors are free). If multiple processors are free,

the free processor with the lowest index gets the opportunity to run its internal scheduler, and schedules the

next process. Assume that the round-robin scheduler of CPU2 or CPU3 always inserts a preempted process

(when its time quantum is over) to the ready queue (even if the queue was empty before the insertion). Note

that one process may run on multiple processors during its lifetime.

Consider four processes arriving to the system at the arrival times and with priorities as specified in the

following table (lower priority number means higher priority, so P4 is the highest-priority process, and P1

is the lowest-priority process). Assume that each process requires two CPU bursts and two I/O bursts for

completion (with their respective durations as specified in the table). All times are in ms.

Process Arrival Priority First First Second Second

Time CPU burst I/O burst CPU burst I/O burst

P1 0 4 4 2 4 3

P2 2 2 10 2 3 2

P3 3 3 8 4 8 4

P4 7 1 3 1 3 1

Draw the Gantt charts for the three processors. In each Gantt chart, clearly mark (alongside the CPU usage

by the processes) the time instances showing (i) when a process starts and finishes its first I/O, (ii) when a

process starts and finishes its second I/O, (iii) when a process terminates (after its second I/O), and (iv) the

durations when the CPU remains idle. (4)

P1 P2 P4

P1

P3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CPU1

(PR)

CPU2

(RR Q = 3ms)

CPU3

(RR Q = 2ms)

P4P2

P3

P1 P1

P2 P3 P3

P2 P3

P2 P3

26 27 28 29

I/
O

1
fo

r
P1

I/
O

1
fo

r
P1

 (
do

ne
)

I/
O

2
fo

r
P1

I/
O

1
fo

r
P2

I/
O

2
fo

r
P1

 (
do

ne
)

I/
O

1
fo

r
P4

I/
O

1
fo

r
P4

 (
do

ne
)

I/
O

2
fo

r
P4

I/
O

2
fo

r
P4

 (
do

ne
)

I/
O

2
fo

r
P2

I/
O

2
fo

r
P2

 (
do

ne
)

I/
O

1
fo

r
P3

I/
O

1
fo

r
P3

 (
do

ne
)

I/
O

2
fo

r
P3

I/
O

2
fo

r
P3

 (
do

ne
)

P4
 te

rm
in

at
es

P3
 te

rm
in

at
es

P2
 te

rm
in

at
es

P1
 te

rm
in

at
es

I/
O

1
fo

r
P2

 (
do

ne
)

— Page 1 of 9 —

For each process, compute the waiting time and the turnaround time. (2)

Compute the percentage of idle time for each processor. The percentage calculation for each processor

should use (in the denominator) the total duration starting at the time of the first arrival of a job (to the

system, not to that processor) and ending at the time of the last removal of a job (from the system, not from

that processor). (2)

(b) Consider N processes sharing a single CPU in a round-robin fashion (N > 2). Assume that each context

switch takes S ms and that each time quantum is Q ms. For simplicity, assume that processes never block on

any event. Find the maximum value of Q (as a function of N, S, and T) such that no process will ever wait

in the ready queue for more than T ms. (2)

Solution After a process is preempted at the end of its time quantum, there will be N context switches and N − 1 time

quanta for the remaining N − 1 processes before that process is scheduled again. So the total wait time of the

process in the ready queue is NS+(N −1)Q. We want NS+(N −1)Q 6 T , that is, Q 6 T
N−1

−

(

N
N−1

)

S, that

is, Qmax =
T

N−1
−

(

N
N−1

)

S.

— Page 2 of 9 —

2. (a) Consider the following solution for the critical section problem between two processes P0 and P1 that
share the following variables.

boolean flag[2]; /* initialized to false */

int turn; /* initialized to 0 or 1 */

The structure of the Process Pi (i = 0 or 1) is given below. The other process is called Pj, where j = 1− i.

do {

/* ENTRY SECTION */

flag[i] = true;

while (turn == j) {

while (flag[j]) { } /* busy wait */

turn = i;

}

/* CRITICAL SECTION */

. . .

/* EXIT SECTION */

flag[i] = false;

/* REMAINDER SECTION */

. . .

} while (1);

Prove/Disprove with proper justification: “The above solution guarantees mutual exclusion for the critical

section problem.” Assume that there is no swap of instructions by the compiler or the hardware. (8)

Solution False. Assume that we are in a timeshared (round robin) single-CPU situation. We have the initialization

flag[0] = flag[1] = false. Suppose that we have the initialization turn = 0. Now, think of the

following sequence of events.

1. P1 is scheduled first. It sets flag[1] = true. Since turn == 0, P1 enters the outer while loop.

Since P0 is yet to be scheduled, P1 sees flag[0] = false, and comes out of the inner while loop.

2. P1 is now preempted (before setting turn = 1).

3. P0 is scheduled. P0 still sees turn = 0, so its outer while loop breaks, and P0 enters its critical section.

4. Inside the critical section, P0 is preempted, and P1 is rescheduled.

5. P1 now sets turn = 1, goes to the top the outer while loop.

6. Since turn is favorable for P1, the loop is broken, and P1 too enters its critical section.

— Page 3 of 9 —

(b) Consider a system which implements (i) preemptive priority-based CPU scheduler and (ii) Peterson’s

solution for mutual exclusion. In such a system, is it possible that a high-priority process gets delayed

indefinitely because of the presence of lower-priority processes? Justify. (2)

Solution Yes. It is possible. Suppose that P1 is of lower priority than P0. At some point of time P1 is running, and P0 is

yet to arrive. P1 is about enter its critical section for the first time, and sets flag[1] = true. Precisely at that

point of time, P0 arrives, and P1 is preempted. P0 starts running, and some time later it plans to enter its critical

section. It sets flag[0] = true and turn = 1. Now, P0 sees flag[1] = true and turn = 1, and enters

the Peterson loop. P1 will never be scheduled in the presence of P0, so P1 can never set flag[1] = 0 (after

its critical section), and the Peterson loop for P0 becomes an infinite one.

— Page 4 of 9 —

3. You have two accounts in a bank. The amounts you have in these accounts are stored in the shared variables

x and y, respectively (in Rupees, assumed integers). At the beginning of a day, you have x = 10000 and

y = 5000. During the day, the following updates take place on your accounts. You go to the bank, manually

withdraw Rs. 1000 from the second account, and then manually transfer Rs. 2000 from the second account

to the first account. At the same time, an online bank transfer (from an external account) deposits Rs. 4000

to your second account. A process P1 handles the manual updates, whereas a second process P2 handles the

online update. In short, the two processes proceed as follows.

shared int x = 10000;

shared int y = 5000;

P1

y -= 1000;

x += 2000;

y -= 2000;

P2

y += 4000;

The processes P1 and P2 run concurrently on a server with a preemptive round-robin scheduler. Therefore

race conditions may happen.

(a) In the evening (that is, strictly after the termination of both the processes P1 and P2), you check your

account balances. What are the possible values of x and y that you can see? Justify each possibility and all

the ways of arriving at each possibility. (6)

Solution Case 1: Everything goes as expected (no race condition): x = 12000 and y = 6000.

Case 2: Race between P2 and the first assignment of y of P1.

(i) P1 wins the race (P2 writes later): x = 12000 and y = 7000

(ii) P2 wins the race (P1 writes later): x = 12000 and y = 2000

Case 3: Race between P2 and the second assignment of y of P1.

(i) P1 wins the race (P2 writes later): x = 12000 and y = 8000

(ii) P2 wins the race (P1 writes later): x = 12000 and y = 2000

Case 4: Race between P2 and all the three lines of P1.

(i) P1 wins the race (P2 writes later): x = 12000 and y = 9000

(ii) P2 wins the race (P1 writes later): x = 12000 and y = 2000

— Page 5 of 9 —

(b) Now, suppose that x and y are atomic integers, and the increment (+=) and decrement (-=) operations

are implemented as atomic add and subtraction operations, respectively. Are you guaranteed to see the

correct account balances in the evening? If yes, justify. If not, explain how the calculations may go wrong. (2)

Solution Yes, we are guaranteed to see the correct balances if atomic operations are used. Atomic operations imply that

when P1 or P2 updates y, it cannot be preempted. A failed update attempt, on the other hand, does not affect y.

(c) Implement the atomic add operation (by a constant amount) on an atomic integer, using the compare-

and-swap hardware instruction. (A subtraction is adding the negative of the second operand, so there is no

immediate necessity to have an atomic subtraction operation.) (2)

Solution atomic_add (atomic int *x, const int a)

{

int temp;

do {

temp = *x;

} while (compare_and_swap(x, temp, temp + a) != temp);

}

— Page 6 of 9 —

4. Dr. Foosycian (MBBS, MD, FRCP) is a busy doctor. In his chamber, he attends to only 25 patients and

3 medical sales representatives per day. The doctor gives priority to the patients, and never serves a sales

representative so long as there are waiting patients. No meeting with the doctor (with a patient or a sales

representative) can be preempted. Multiple visitors cannot be in the doctor’s chamber at the same time.

A new visitor first collects a token (given in the sequence 1,2,3, . . .) provided that the doctor’s daily quota

in that visitor’s category (patient or sales-rep) is not full. If the quota is already full, the visitor leaves.

Otherwise, the visitor informs the doctor about his/her arrival, and then waits outside the doctor’s chamber

until the doctor calls him/her.

You need to design three processes doctor(), patient(), and salesrep() for simulating the workings

of Dr. Foosycian, a patient, and a sales representative, respectively. The processes should be cooperative

in the sense that they will follow the doctor’s protocol strictly and will not block any resource when not

needed. Shared memory and semaphores (and no other IPC primitives) are to be used to synchronize the

processes and to provide mutual exclusion. Follow the guidelines given below, and fill up the details of the

three processes.

(Hint: This problem is similar to the sleeping barber’s problem with three differences. First, the barber has

only one type of customer, whereas the doctor has two. Second, the barber keeps on sleeping and cutting

hair for ever, whereas our doctor stops after his daily quota. Finally, customers in the barber’s shop have to

leave for unavailability of empty chairs, whereas visitors to our doctor have to leave if they come too late.)

The following shared variables are to be used with the indicated initializations and implications.

shared int last_token_no_patient = 0; // Count of tokens already given to patients

shared int last_token_no_salesrep = 0; // Count of tokens already given to sales-reps

shared int no_of_waiting_patients = 0; // Count of patients that are waiting now

shared int no_of_waiting_salesreps = 0; // Count of sales-reps that are waiting now

In addition, four semaphores are to be used and initialized as follows. The first of these four semaphores is

to be used as a counting semaphore, whereas the remaining three are to be used as binary semaphores (that

is, as mutex locks).

semaphore sem_doctor = 0; // Only the doctor waits on this semaphore

semaphore mtx_patient = 0; // All patients wait on this semaphore

semaphore mtx_salesrep = 0; // All sales representatives wait on this semaphore

semaphore mtx_counts = 1; // For mutual exclusion of accessing shared variables

Do not use any variables or semaphores other than those mentioned above.

First, write (on the next page) the pseudocode of the process for the doctor. The doctor stays in his chamber

until he attends to 25 patients and 3 sales representatives. Assume that on each day, at least those many

visitors (in each category) come to meet the doctor, and that no visitor having a token leaves without meeting

the doctor. Your code must contain appropriate synchronization and mutual-exclusion primitives.

— Page 7 of 9 —

doctor ()

{

while (true) {

/* If the doctor is done for the day, break the loop */ (2)

wait(&mtx_counts);

if ((last_token_no_patient == 25) && (last_token_no_salesrep == 3) &&

(no_of_waiting_patients == 0) && (no_of_waiting_salesreps == 0)) {

signal(&mtx_counts);

break;

}

/* Wait for the next visitor */ (1)

wait(&sem_doctor);

/* Serve a patient or a sales representative as per doctor’s strategy */ (3)

wait(&mtx_counts);

if (no_of_waiting_patients > 0) {

--no_of_waiting_patients;

signal(&mtx_patient);

signal(&mtx_counts);

attend_to_patient();

} else {

--no_of_waiting_salesreps;

signal(&mtx_salesrep);

signal(&mtx_counts);

attend_to_salesrep();

}

}

}

— Page 8 of 9 —

Then, write the pseudocode of the process for a patient. A patient first tries to get the next token. If no tokens

are available, he/she leaves. Otherwise, he/she takes the token, notifies the doctor about his/her arrival, and

waits until the doctor calls him/her. Include suitable synchronization and mutual-exclusion primitives. (2)

patient ()

{

wait(&mtx_counts);

if (last_token_no_patient == 25) {

signal(&mtx_counts);

} else {

++last_token_no_patient;

++no_of_waiting_patients;

signal(&mtx_counts);

signal(&sem_doctor);

wait(&mtx_patient);

get_medical_advice_from_doctor();

}

}

Finally, write the pseudocode of the process for a sales representative (similar to that for a patient). (2)

salesrep ()

{

wait(&mtx_counts);

if (last_token_no_salesrep == 3) {

signal(&mtx_counts);

} else {

++last_token_no_salesrep;

++no_of_waiting_salesreps;

signal(&mtx_counts);

signal(&sem_doctor);

wait(&mtx_salesrep);

sales_promo();

}

}

— Page 9 of 9 —

