
CS39002 Operating Systems Laboratory
Spring 2024

Lab Assignment: 7
Date of submission: 13–Mar –2024

__

Design your own thread library

Foosoft Inc., Barland plans for its custom-made thread library (like the pthread library). The top
engineers of Foosoft are given the specifications of the library (called foothread). Foosoft utilities
run only on Linux, so the engineers must focus on Linux-based designs. A kernel-level design
allows the engineers to exploit special hardware features like compare-and-swap instructions, but
that requires superuser access, so the library is decided to be built at the user level. Standard
process-level synchronization tools can be used (the administration allows the use of semaphores
and no other IPC primitives). No available thread library (like pthread or OpenMP) can be used.

Part 1: Specifications of the foothread library

Write two files foothread.h and foothread.c. This involves the following components.

Threads

A process may create many threads (a limit FOOTHREAD_THREADS_MAX should be imposed and defined
in the header file). In Linux terminology, the main thread is called the leader. We can call all the
other created threads followers. All the followers must have the same PID and PPID as the leader.
They will however have mutually distinct TIDs (a Linux-specific feature). The followers should
share almost everything (as in pthread) except the stack. The default stack size (to be defined as
FOOTHREAD_DEFAULT_STACK_SIZE in the header file) is taken to be 2MB (2097152 bytes). Each
follower may be joinable with the leader (FOOTHREAD_JOINABLE) or detached from the leader
(FOOTHREAD_DETACHED). Before termination, the leader can wait for all joinable threads, but not for
the detached threads. The default behavior of a follower would be detached.

Data type for foothreads

Define a data type foothread_t. Include, in this data type, whatever is necessary for the working of
the library.

Creating threads

Write a function with the following prototype.

void foothread_create (foothread_t * , foothread_attr_t * , int (*)(void *) , void *) ;

The details of the created thread are stored in the first argument (NULL permitted), the second
argument is for setting the attributes of the new thread, the third argument is the function where the
created thread will jump to, and the fourth argument is a pointer argument to that function.

The attributes of a foothread (define a type foothread_attr_t) consists of two fields: the join type
and the stack size. Write the following function for setting attributes. If the second argument of
foothread_create is NULL, then only the default values are to be used. A variable of type
foothread_attr_t can also be initialized to FOOTHREAD_ATTR_INITIALIZER (a macro indicating the
default values). Do not use a non-NULL attribute without any kind of initialization.

void foothread_attr_setjointype (foothread_attr_t * , int) ;
void foothread_attr_setstacksize (foothread_attr_t * , int) ;

As mentioned earlier, the join type can be either FOOTHREAD_JOINABLE or FOOTHREAD_DETACHED.

Use the clone() system call with appropriate arguments to implement foothread_create().

Thread termination

Recall that all the foothreads in a program share the same PID and PPID (parent PID). They are
distinguished from one another by their thread-specific IDs (called TIDs). The Linux-specific
system call gettid() returns this TID. If the program is run from a shell, the PPID of each thread is
that of the shell. This implies that the leader cannot wait for the termination of the followers (the
shell too can wait only for the entire process, not for its individual threads). When the starting
function of a follower returns, only that thread terminates. On the other hand, when the leader
leaves the main() function, the entire process including all created threads terminate. This is not
necessarily desirable. You can synchronize the termination of all the threads using the call:

void foothread_exit () ;

If a follower is FOOTHREAD_DETACHED, the leader cannot wait for its termination. All the joinable
followers and the leader should call foothread_exit() near the end in order to synchronize. This
call is unlike pthread_exit() that lets the calling threads exit. It should be used as some kind of
synchronization tool. The followers should return from their start functions after calling this. The
leader may do some bookkeeping work after this call, before it really exit()’s.

Mutexes

Define a data type foothread_mutex_t (to implement binary semaphores). Implement the following
functions with the obvious meanings.

void foothread_mutex_init (foothread_mutex_t *) ;
void foothread_mutex_lock (foothread_mutex_t *) ;
void foothread_mutex_unlock (foothread_mutex_t *) ;
void foothread_mutex_destroy (foothread_mutex_t *) ;

Unlike Linux semaphores, foothread mutexes need to satisfy the following restrictions.

1. Only the thread that locks a mutex can unlock it. An attempt to unlock by another thread will
lead to an error.

2. A locked mutex can be attempted to be locked. But then, the new requester will be blocked
until the mutex is available to it for relocking.

3. An attempt to unlock an unlocked mutex should lead to an error.

Barriers

Define a data type foothread_barrier_t and the following functions.

void foothread_barrier_init (foothread_barrier_t * , int) ;
void foothread_barrier_wait (foothread_barrier_t *) ;
void foothread_barrier_destroy (foothread_barrier_t *) ;

A foothread barrier must not be used without initialization.

All the synchronization (and mutual exclusion) in the library must be implemented using only
Linux semaphores. No other synchronization mechanism (like pipes) will be accepted. Calls like
sleep() or usleep() are not universal synchronization primitives, and must never be used in the
implementation of the library. Moreover, do not use busy waits anywhere. Finally, a plain
semaphore is neither a mutex nor a barrier. Alongside a semid, the data type foothread_mutex_t or
foothread_barrier_t should store additional information. Synchronization among the threads using
foothread_exit would require some system-level global data. Declare and use these in foothread.c
(not in foothread.h―the user does not need to know or manipulate these data and must be happy
only with the functionality of foothread_exit).

Foosoft would perhaps ask its engineers to implement condition-based synchronization. In this
assignment, you do not have to do that.

Generate a dynamic library libfoothread.so. For compilation, a makefile is supplied. You just need
to make lib.

Part 2. An application program

You now have a brand-new thread library in your bag. It is time to test it for correctness. Write an
application program computesum.c that does the following.

Let T be a rooted tree with n nodes numbered 0, 1, 2, … , n – 1. A text file tree.txt stores the parent
representation of the tree. A 16-node tree in this representation is given below. The parent of the
root is the root itself.

The file tree.txt The tree
16
0 13
1 2
2 8
3 3
4 12
5 8
6 2
7 12
8 3
9 8
10 0
11 13
12 3
13 8
14 9
15 2

The user interactively enters some positive integers at the leaf nodes, one by one. Subsequently,
each internal node maintains its partial sum from its child nodes. Eventually, the root node prints the
sum of all the user inputs.

In order to implement this algorithm, the leader node first reads n and the parent array P[] from the
input file tree.txt. It then sets up the synchronization resources to be shared by the followers. It
then creates n follower threads, one for each node in the tree. The leaf nodes read the user inputs,
and update the sums of their respective parents. An internal node, after all its children update its
sum, adds this sum to that of its parent. Eventually, the root node gets the total sum of all the user

inputs, and prints the sum. After this, the leader cleans up the resources (using the destroy functions
of the library), and then terminates. Use only the foothread synchronization functions (mutexes and
barriers, and absolutely nothing else) throughout computesum.c. Use foothread_exit (not new
barrier(s) and/or mutex(es)) to synchronize the threads at the end.

Other files

A random-tree generator gentree.c is supplied to you. You can run it to generate random trees. You
can pass n (the number of nodes) as the only command-line argument. The default value of n is 25.

Additionally, a makefile is provided to do the following tasks.

make (or make lib) Create libfoothread.so

make app Compile computesum.c

make run Compile and run computesum.c (assuming that tree.txt is available)

make tree Compile gentree.c (This only generates ./gentree. Run it separately.)

make newrun Run with a new tree (after all necessary compilations)

make clean Do this before your submission

What to submit

A single zip file containing foothread.h, foothread.c, and computesum.c. The other files supplied
may also be there in the archive, but do not submit any binary files (see make clean).

Sample

A run on the example given in the text may proceed as given below.

$ cp TREE.txt tree.txt
$ make run
gcc -shared -Wall -o libfoothread.so foothread.o
gcc -Wall -Wl,-rpath=. -I. -L. -o computesum computesum.c -lfoothread
./computesum
Leaf node 1 :: Enter a positive integer: 1
Leaf node 4 :: Enter a positive integer: 2
Leaf node 6 :: Enter a positive integer: 3
Leaf node 5 :: Enter a positive integer: 4
Leaf node 7 :: Enter a positive integer: 5
Leaf node 10 :: Enter a positive integer: 6
Leaf node 11 :: Enter a positive integer: 7
Leaf node 14 :: Enter a positive integer: 8
Leaf node 15 :: Enter a positive integer: 9
Internal node 12 gets the partial sum 7 from its children
Internal node 0 gets the partial sum 6 from its children
Internal node 9 gets the partial sum 8 from its children
Internal node 2 gets the partial sum 13 from its children
Internal node 13 gets the partial sum 13 from its children
Internal node 8 gets the partial sum 38 from its children
Internal node 3 gets the partial sum 45 from its children
Sum at root (node 3) = 45
$

