
CS39002 Operating Systems Laboratory
Spring 2024

Lab Assignment:5
Date of submission: 07–Feb –2024

__

Mutual exclusion and synchronization using semaphores

Mr. Fooman is a top-level boss in a company, having a team of n workers under him. In order to
execute a project, he calls his team, and hands over the duty chart to the workers. Each worker is
assigned a specific module in the project. The duty chart specifies precedence constraints among the
modules, that is, which modules are to be finished before which modules. Assume that there are no
cyclic dependencies. As soon as some module is finished, the corresponding worker in charge will
report to Fooman. Fooman will finally check whether the modules are carried out according to the
precedence plan.

We can visualize Fooman’s problem as making a topological listing of the vertices in a directed
acyclic graph (DAG) G = (V, E). Each node in G stands for a module (synonymously with a
worker), so |V| = n. If Module i supplies some prerequisites for Module j, there exists a directed
edge (i, j) in E. The graph contains no other types of edges.

In this assignment, you are required to make a multi-process implementation of topological sorting.
However, you are not supposed to implement any DFS-based algorithm. There will be one process
B representing the boss, and n worker processes W0, W1, W2, . . . , Wn – 1. Unlike in the previous
assignment, B does not fork the worker processes. You run B in one terminal. In another terminal,
you run the n worker processes concurrently in the background. The different components of this
assignment are now elaborated.

The DAG generator

A C program gengraph.c is supplied to you. Each run of this program generates a random DAG on
n nodes with each (forward) edge present with probability p. The default value of n is 16, and the
default value of p is 0.2. You can supply p and n as optional command-line arguments. Redirect the
output to a text file graph.txt which stores n followed by the n × n adjacency matrix of the graph.

$ gcc -Wall -o gengraph gengraph.c
$./gengraph > graph.txt
$./gengraph 100 > graph.txt
$./gengraph 50 0.1 > graph.txt

The boss process B

B reads graph.txt, and stores the adjacency matrix in a shared memory A with n2 int entries. B also
creates a shared array T of n int entries, for storing the topological listing. Finally, the index in T,
call this idx, where each worker will write is also created as a shared memory (one int only). The
count n of workers is available in the input file graph.txt, and does not need to be saved (as a read-
only int value) in the shared memory.

B also creates some semaphore sets. Do not use pipes or any other synchronization mechanism. The
adjacency matrix A is initially populated by B, and later accessed by the workers (and by B too at
the very end) in the read-only mode, so accessing A does not call for mutual exclusion.

However, T and idx are shared items. A single semaphore mtx is needed for the mutual exclusion of
the worker processes trying to update the listing simultaneously. For example, multiple nodes of in-
degree 0 may try to write concurrently (or in parallel) to T at idx = 0. The semaphore mtx will guard
against race conditions. Use a single semaphore to guard both T and idx.

For synchronizing the workers as per the precedence plan, a set sync of n semaphores is needed, one
for each worker. (Do not create a semaphore for each edge, because there may be too many edges.)
The purpose of sync[i] is to block the worker Wi until all Wj with links (j, i) write to T.

Finally, note that B does not fork the workers, so it cannot wait() for them to terminate. B also does
not want to do busy waiting (by polling idx in a loop), so another semaphore ntfy is needed to notify
the boss about the end-of-work from each worker process.

B initializes all these semaphores by appropriate values.

After creating and initializing the above shared-memory segments and semaphore sets, B waits until
it receives notifications from all the workers. After this, B prints T, and checks the contents of T to
figure out whether T stores a valid topological listing (that is, whether your code worked correctly).
It prints an appropriate message (like well done, or these many precedence constrains are violated).

Finally, B removes all IPC resources it has created, and exits.

Run a C program boss.c to do the task of the boss.

The worker processes

Each worker process Wi (there are n of them) should be supplied two command-line arguments: n,
and the ID i in {0, 1, 2, . . . , n – 1} of the node it stands for. Its only task is to append its ID i at the
index idx of T, and to update (increment) idx. It should attach to the three shared-memory segments
created by the boss. Moreover, it should also use the semaphore sets created by the boss. The
worker processes are not forked by B, so ftok() should be used to agree upon the shared-memory
and semaphore-set keys. Assume that each worker process starts running strictly after B creates all
of these resources.

Each Wi waits for the sync signals from all incoming links (j, i) (if any exists). It then writes i at the
index idx of T, and increments idx. This writing is the critical section for the worker processes, and
must be guarded by mtx. After this write finishes, Wi sends sync signals to all outgoing links (i, k) (if
any exists). Finally, Wi notifies B (using ntfy) that it is done with the update of T, and terminates.

Write a C program worker.c to do the above task of a worker. This program is not required to print
anything to stdout. However, you may print a few diagnostic messages if that comforts you.

Some other files

Compile boss.c to the executable boss. Also compile worker.c to the executable file worker. A
makefile is supplied to you to do all the compilations. It is painful to run n worker processes
manually from a terminal. A bash script (dowork) is also supplied to you to automate the process.
Give execute permission to this script, and call it to launch all the worker processes. This script
assumes that the DAG is available as graph.txt.

Sample Output

Do this is one shell.

$ make
gcc -Wall -o gengraph gengraph.c
gcc -Wall -o boss boss.c
gcc -Wall -o worker worker.c
$./gengraph > graph.txt
$ cat graph.txt
16
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0
0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
$./boss
+++ Boss: Setup done...

The boss waits at this point. Run the shell script ./dowork in another shell. When all the worker
processes finish, the boss prints the following, and terminates.

+++ Topological sorting of the vertices
5 3 10 13 4 7 6 15 0 2 9 11 14 1 12 8
+++ Boss: Well done, my team...

Use make clean to delete all the binary files. Submit the entire directory as a single zip archive.

