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Shared Memory without Synchronization

One producer and n consumers share a memory M[] capable of storing two int variables. The producer
generates items (random integers) in M[1] for a predetermined number ¢ of times. For each item generated,
the producer specifies in M[0] the consumer (an integer in the range 1, 2, 3, . . . , n) for which the item
written in M[1] is meant. The designated consumer reads M[1], and sets M[0] to 0, indicating that the item is
consumed. After all of the ¢ items are generated and consumed, the producer writes —1 to M[0]. After reading
this special value of M[0], each consumer prints some aggregate information, and terminates. Finally, the
producer terminates too after printing some aggregate information.

In order to implement this set of actions, write a C program prodcons.c. The parent process (call it P) plays
the role of the producer. P reads # (the number of consumers) and ¢ (the number of items to be produced)
from the user or as command-line arguments. Then, P creates a shared-memory segment M capable of
storing two int variables. P also initializes M[0] to 0 (implying that no item is available for consumption at
the beginning). P then forks # child processes Ci, (., . . ., C, which play the roles of the n consumers. These
child processes (or consumers) are numbered 1, 2, . . ., n. After this, P goes to a production loop, and each C;
goes to a consumption loop. The loops run until all of the ¢ items are produced and consumed. These loops
work as follows.

Production loop

Foreachi=1, 2, ..., 1t the producer P (parent in our case) generates a random 3-digit int value ifem and a
random consumer c in the range 1, 2, . . ., n. P waits (busy wait) until M[0] becomes 0. When M[0] becomes
0, P sets M[0] to ¢ and M[1] to item (in that order). An optional delay (you can use usleep()) between setting
M[0] and setting M[1] should be used if a compile-time macro SLEEP is set.

After producing ¢ items, P waits (busy wait) until M[0] becomes 0 (that is, the last item is consumed by the
designated consumer child). P then writes —1 to M[0], and waits until all of the » child processes terminate.
P then prints, for each consumer ¢, the count of items produced for ¢, and the sum of these items.

P finally removes the shared-memory segment M, and exits.
Consumption loop

The c-th consumer waits until M[0] becomes ¢ or —1. If M[0] becomes c, the consumer reads M[1] as the
next item meant for it. When M[0] becomes —1, the consumption loop is broken. The number of items read
by the consumer and the sum of these items are then printed, and the child process terminates.

Compile-time flags

The default behavior of your program should be to print only an initial message and the final statistics. If the
compile-time flag VERBOSE is set, then the production and the consumption of each item should also be
printed (see the Sample Output). Another compile-time flag SLEEP (already mentioned above) dictates
whether there is no delay between the setting of M[0] and the setting of M[1] by the producer (this should be
the default behavior if the flag is not set) or there is a small delay (of 1-10 microseconds) between these two
assignments. This delay simulates preemption of P (which would otherwise be very difficult to reproduce),
and highlights the necessity of synchronization for this producer-consumer problem.

Submit a single C source file prodcons.c.
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