CS39002 Operating Systems Laboratory
Spring 2024

Lab Assignment: 4
Date of submission: 31-Jan —2024

Shared Memory without Synchronization

One producer and n consumers share a memory M[] capable of storing two int variables. The producer
generates items (random integers) in M[1] for a predetermined number ¢ of times. For each item generated,
the producer specifies in M[0] the consumer (an integer in the range 1, 2, 3, . . . , n) for which the item
written in M[1] is meant. The designated consumer reads M[1], and sets M[0] to 0, indicating that the item is
consumed. After all of the ¢ items are generated and consumed, the producer writes —1 to M[0]. After reading
this special value of M[0], each consumer prints some aggregate information, and terminates. Finally, the
producer terminates too after printing some aggregate information.

In order to implement this set of actions, write a C program prodcons.c. The parent process (call it P) plays
the role of the producer. P reads # (the number of consumers) and ¢ (the number of items to be produced)
from the user or as command-line arguments. Then, P creates a shared-memory segment M capable of
storing two int variables. P also initializes M[0] to 0 (implying that no item is available for consumption at
the beginning). P then forks # child processes Ci, (., . . ., C, which play the roles of the n consumers. These
child processes (or consumers) are numbered 1, 2, . . ., n. After this, P goes to a production loop, and each C;
goes to a consumption loop. The loops run until all of the ¢ items are produced and consumed. These loops
work as follows.

Production loop

Foreachi=1, 2, ..., 1t the producer P (parent in our case) generates a random 3-digit int value ifem and a
random consumer c in the range 1, 2, . . ., n. P waits (busy wait) until M[0] becomes 0. When M[0] becomes
0, P sets M[0] to ¢ and M[1] to item (in that order). An optional delay (you can use usleep()) between setting
M[0] and setting M[1] should be used if a compile-time macro SLEEP is set.

After producing ¢ items, P waits (busy wait) until M[0] becomes 0 (that is, the last item is consumed by the
designated consumer child). P then writes —1 to M[0], and waits until all of the » child processes terminate.
P then prints, for each consumer ¢, the count of items produced for ¢, and the sum of these items.

P finally removes the shared-memory segment M, and exits.
Consumption loop

The c-th consumer waits until M[0] becomes ¢ or —1. If M[0] becomes c, the consumer reads M[1] as the
next item meant for it. When M[0] becomes —1, the consumption loop is broken. The number of items read
by the consumer and the sum of these items are then printed, and the child process terminates.

Compile-time flags

The default behavior of your program should be to print only an initial message and the final statistics. If the
compile-time flag VERBOSE is set, then the production and the consumption of each item should also be
printed (see the Sample Output). Another compile-time flag SLEEP (already mentioned above) dictates
whether there is no delay between the setting of M[0] and the setting of M[1] by the producer (this should be
the default behavior if the flag is not set) or there is a small delay (of 1-10 microseconds) between these two
assignments. This delay simulates preemption of P (which would otherwise be very difficult to reproduce),
and highlights the necessity of synchronization for this producer-consumer problem.

Submit a single C source file prodcons.c.



Sample Output

$ gcc
n=>5
t = 100

Producer

Producer
17 items
23 items
17 items
18 items
25 items

is alive

has produced
for Consumer
for Consumer
for Consumer
for Consumer
for Consumer

$ gcc -Wall -DVERBOSE

n=4
t =10

Producer
Producer

Producer

Producer

Producer
Producer
Producer
Producer
Producer
Producer

Producer

is alive
produces

produces

produces

produces
produces
produces
produces
produces
produces

produces

288

281

326

535

505

848

799

828

884

688

100

1:
2:
3:
4:
5:

prodcons.c ; ./a.out

for

for

for

for
for
for
for
for
for

for

-Wall prodcons.c ; ./a.out

items
Checksum
Checksum
Checksum
Checksum
Checksum

Consumer

Consumer

Consumer

Consumer
Consumer
Consumer
Consumer
Consumer
Consumer

Consumer

Producer has produced 10 items

1 items
3 items
2 items
4 items
gcc -W

2
10

+ 2

Producer
Producer
Producer
Producer
Producer
Producer
Producer
Producer
Producer
Producer

Producer

for Consumer 1: Checksum
for Consumer 2: Checksum
for Consumer 3: Checksum
for Consumer 4: Checksum

10204
13657
7715

10798
13488

505

1671
1080
2726

Consumer
Consumer
Consumer

Consumer
Consumer
Consumer
Consumer
Consumer
Consumer
Consumer

Consumer

Consumer

Consumer

Consumer
Consumer

Consumer
Consumer

Consumer
Consumer
Consumer
Consumer
Consumer
Consumer
Consumer
Consumer
Consumer

Consumer
Consumer

all -DVERBOSE -DSLEEP prodcons.c ; ./a.out

is alive
produces
produces
produces
produces
produces
produces
produces
produces
produces

produces

846

648

889

861

913

924

450

671

168

364

for

for
for
for
for
for
for
for
for

for

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Producer has produced 10 items

6 items for Consumer 1: Checksum
4 items for Consumer 2: Checksum

4417
2317

Consumer
Consumer
Consumer
Consumer
Consumer
Consumer
Consumer
Consumer
Consumer
Consumer
Consumer
Consumer

Consumer
Consumer

wWhRLrNUOUB_OV

4

4

APWNE D

is alive
is alive
is alive

is alive
is alive
has read
has read
has read
has read
has read

is alive
is alive

reads

288

is alive

reads

281

is alive

reads
reads
reads
reads
reads
reads
reads

reads

326

535

505

848

799

828

884

688

25
23
17
18
17

items:
items:
items:
items:
items:

has read 1 items:
has read 3 items:
has read 2 items:
has read 4 items:

is alive

reads

0

is alive

reads
reads
reads
reads
reads
reads
reads
reads

reads

846

648

889

861

913

924

450

671

168

Checksum
Checksum
Checksum
Checksum
Checksum

Checksum
Checksum
Checksum
Checksum

has read 6 items: Checksum
has read 4 items:

Checksum

13488
13657
10204
10798
7715

505

1671
1080
2726

3729
2641



