
CS39002 Operating Systems Laboratory
Spring 2024

Lab Assignment: 3
Date of submission: 24–Jan –2024

__

IPC using pipe and dup

In this assignment, you write a single C program CSE.c. Compile the program to an executable file called
CSE. The program deals with three initial processes called C, S, and E. They work as follows.

Supervisor (S): This is the parent process. This process creates the necessary pipe(s), and then forks two
child processes henceforth referred to as the “First Child” and the “Second Child”, respectively. Each of
these child processes opens an xterm to run ./CSE itself for interacting with the user.

Command-input child (C): This child keeps on reading lines of commands from the user in its own xterm,
and sending the commands verbatim to the other child.

Execute-command child (E): This child keeps on reading the commands sent by the other child, and
executing them in the foreground (by forking child processes) in its own xterm.

The parent S initiates First Child in the C mode and the Second Child in the E mode. It then waits until
both the child processes terminate.

Each command supplied by the user can be one of the following:

1. A standard Linux command (like ls, ps, who, cat) with any number of command-line parameters
but without pipes (like |) or redirections (like >, >>, and <).

2. The special command exit that terminates both the child processes.

3. Another special command swaprole that swaps the roles (C and E) of the two child processes. That
is, when the user types this command (without any arguments) to the C child, the C child sends this
command verbatim to the E child. After this, the C child switches to the E (execute-command)
mode, and the E child switches to the C (command-input) mode. This command may be supplied by
the user any number of times in the appropriate C windows.

All of the processes C, S, and E run the same executable file ./CSE. If ./CSE is run without any command-
line arguments, it is the parent process (S). After the parent forks the First Child in C mode or the Second
Child in E mode, each child execs xterm which in turn runs ./CSE with appropriate command-line
arguments, so that each child knows its role (mode) along with other relevant information (like pipe fd’s).

Follow the instructions given below in order to implement CSE.c.

• An xterm can be opened with a customized title to run an executable file (in our case, ./CSE) as

xterm -T "Customized Title" -e ./CSE arg1 arg2 arg3 . . .

• Child C reads user commands from its stdin. It sends the command to Child E via a pipe. Child E
reads each command from the pipe, and forks a (grand)child for executing the command (and itself
waits until the grandchild terminates). The grandchild prints the output of the command to the stdout
of E. This pipe must be created by the parent S, and the corresponding file descriptors must be sent
to the child processes as command-line arguments. Two child processes cannot themselves establish
an unnamed pipe between them. Do not involve the parent S in any child-to-child communication.

• The stdout of C should be dup-ed as the write-end of the pipe. Likewise, the stdin of E should be
dup-ed as the read-end of the pipe. This allows the two child processes to use high-level I/O
primitives like scanf, printf, fgets, fputs, . . . This however prevents the Child C from printing a
prompt like Enter Command> to the terminal. Use the un-dup-ed stderr for that purpose. This is not the
intended use of stderr, but nobody will mind.

• A swaprole command will necessitate the restoring of the original stdin or stdout. This can be
achieved by maintaining copies of the original stdin and of the original stdout (can be done by dup
once at the beginning).

• Use fflush() whenever it is necessary to flush an output buffer (like stdout) immediately.

There are two more problems to solve. The solutions are outlined below.

1. Suppose that the user supplies the command swaprole in the C window. Immediately after this
input, this situation may happen: C writes the command to the pipe, switches role to E, and reads
from the pipe, before the earlier E gets a chance to read from the pipe. This should not happen. Do
not use sleep to delay the earlier C (and give the earlier E time to read from the pipe). Use another
pipe instead (to be created by S before forking).

2. Suppose that the user supplies an interactive command. When E lets this command get executed by a
(grand)child process, the stdin of E and of the grandchild is the pipe’s read end. That is, the inputs
for the interactive command should come from the other window C. This can be unimaginably bad
(for example, you will go mad if you open a text editor in one window and type in another window).
To solve this problem, note that the (interactive) command is not executed by E itself, so E can
afford to continue with the dup-ed definition of stdin. The grandchild which actually does the
running of the command should restore the original stdin for taking user inputs in the E window
itself. This strategy will also relieve E and the grandchild from any contention over user inputs.

That’s all indeed.

Submit the single C source file CSE.c to the CSE Moodle server before it is too late.

Sample Run of CSE

Run ./CSE from a terminal (let its prompt be $). This prints the following lines to the terminal, and opens two
xterms. Note the pipe file descriptors (3 and 4) for the communication between the child processes.

$ gcc -Wall -o CSE CSE.c
$./CSE
+++ CSE in supervisor mode: Started
+++ CSE in supervisor mode: pfd = [3 4]
+++ CSE in supervisor mode: Forking first child in command-input mode
+++ CSE in supervisor mode: Forking second child in execute mode

You type some commands in the First Child, and the Second Child executes them.

Then, you supply the special command swaprole.

The Second Child reads some commands, and the First Child runs them.

Another swaprole, and the first child recursively invokes ./CSE. Two additional xterms are opened. The new
xterms communicate between them leaving the first two xterms untouched. Note that the new xterms are
using different pipe file descriptors (9 and 10).

The new xterms close by the user input exit.

Yet another swaprole, and the user is going to terminate by entering exit in the current C window.

The final lines are written by your original terminal.

+++ CSE in supervisor mode: First child terminated
+++ CSE in supervisor mode: Second child terminated
$

Running interactive programs

Edit a C file.

Swaprole and compile.

Run

Extras (if you care, NOT for submission)

There are two issues not yet dealt with by the submission part of the assignment, given on the earlier pages.
These are for your personal consumption only. If you solve these, you may send a Sales Quotation for your
product against a tender floated by FooBar Inc.

• The (current) E window redirects its stdin to the input end of the pipe, and accepts nothing from the
original stdin. However, the user can type things against the prompt: Waiting for command> To the E
window, this is garbage, and nothing would happen at this moment. But these inputs are not lost.
They will stay in the buffer of the real stdin. No running process can straightaway control this,
because this happens between the user and the device (terminal).

Later, when the E window reinstates the original stdin (for example, after a swaprole or while
running an interactive program by a grandchild), the stored garbage will be delivered to the E
window. This will certainly have unwelcome effects. For example, after a swaprole, the window
(now in C mode) will treat the garbage as command(s) entered by the user, whereas an interactive
program will consume the garbage as its own input.

How can you ensure that the garbage actually goes to something like a trash bin, and does not
interfere with the normal intended working of the windows? Note that fflush(stdin) will not work.

• Handle ^C and ^Z in each of the three windows C, S, and E (it is assumed that you run S from a
terminal window on your desktop). Pressing each of these should print “Type exit in the C window”
only once in the respective window, and will have no further effect.

FooBar Inc. needs a single file CSE.c.

