
CS39002 Operating Systems Laboratory
Spring 2024

Lab Assignment: 2
Date: 17–Jan –2024

__

IPC using signals

There is a simple-minded (stupid if you will) program written in job.c. This keeps on printing a character and
sleeps for a second. If the character is supplied as an argument, that character is printed. Without any
command-line argument, a random sequence of upper-case letters is printed. This is similar in spirit to the
Linux command yes, except that job.c terminates after printing ten characters (so it runs for about ten
seconds). The program does not handle any signals by custom-made handlers, nor does it send any signal to
any process. Indeed, the code for job.c will be supplied to you. Use it as it is. You are not allowed to alter this
code in any manner. Compile it to an executable file job.

Your task is to write a smart manager program mgr.c. The manager talks directly with the user, and based
upon user input, performs one of the following tasks in each iteration of a loop.

User input Task done by the manager

p The manager keeps a small process table PT with 11 entries. PT[0] is reserved for the
manager itself (SELF). The remaining ten entries are meant for storing information about the
jobs it initiates (see the user input r below). Each such entry stores the pid of that job, the
process group id of the job, the current status of the job, and the argument supplied to the job
for printing. The status of a job will be one of the following.

FINISHED job has finished after printing ten characters.
TERMINATED job was terminated by ^C from the user (terminal).
SUSPENDED job was suspended by ^Z from the user (terminal).
KILLED job was killed by the manager in the suspended state.

See the sample output given at the end.

r Start a new job with a randomly chosen upper-case letter for printing. Each job is exec-ed by
a new child process, and runs in the foreground. As mentioned above, each job runs for about
ten seconds. The user may press ^C or ^Z when the job is running. This would terminate or
suspend the running job.

Recall that the process table PT[] has 11 entries, and PT[0] is reserved for the manager. If the
user asks to initiate the eleventh job, the manager should quit with a non-zero status. Of
course, the PT entries for FINISHED, TERMINATED, and KILLED jobs are reusable, but
you do not have to do that.

c Do nothing if there are no suspended jobs. Otherwise ask the user about which of the
currently suspended jobs is to be resumed (continued). Upon a valid input (an index in PT[]
storing the information about a job with SUSPENDED status), the job resumes running in the
foreground until it either completes (a total of) ten printings and exits normally, or encounters
a ^C or ^Z again from the user terminating or re-suspending the job.

k Do nothing if there are no suspended jobs. Otherwise ask the user about which of the
currently suspended jobs is to be killed. Upon a valid input (an index in PT[]), the process is
prematurely killed by the manager (the remaining characters are not printed by the job).

h Print a help message (see the Sample Output).

q Quit with exit status 0. (What will happen to the would-be orphaned suspended jobs? The
manager would kill them before exiting.)

Compile the manager program to an executable named mgr.

In order to write the manager program, you need to take care of quite a few issues explained in detail now.

1. Running mgr from a shell (like bash) gives it a new process-group id (typically the same as the pid
of the mgr process). Any child process (job) fork-ed by mgr would by default have the same process
group id as mgr (even after exec). If the user presses ^C or ^Z, the corresponding signal (SIGINT or
SIGTSTP) goes to all the processes in the process group. That is, a user input ^C will terminate not
only the child job, but the parent mgr too. But we want ^C or ^Z to affect only the child job, not the
parent process (mgr). So the parent process should write its own signal handlers to deal with these
signals. Note that job.c does not use any signal handler.

2. The manager mgr can kill (user command k) or resume (user command c) a suspended job by
sending SIGKILL or SIGCONT to it from the respective signal handlers of mgr.

3. Suppose that a parent process (mgr in our case) has some custom-made signal handlers defined
before forking a child process (a job in our case). If the child process execs to run a new program,
the signal handlers of the parent are not available to the child process. This is natural, because the
functions private to the parent program are not accessible to the child program. That is, even if mgr
has its own handlers for ^C and ^Z, child jobs are not affected by those, and are terminated or killed
as desired.

4. Apparently, your problem is solved. Well, almost! There is a subtle catch. Suppose that mgr runs a
job, and while job is still running, the user presses ^Z. With the solution presented so far, this will
suspend the job but not mgr. Later, upon user’s request (r), another job starts running―call it job′.
Before job′ finishes, the user presses ^C causing job′ to terminate. Note that mgr handles this ^C by
its own handler. But what happens to the supended job. Because it is suspended, ^C does not
immediately affect job. Later, if the user plans to resume job (using the command c), it wakes up,
receives the pending ^C, and terminates without finishing its remaining work. This should not
happen. In other words, no suspended process should be affected by ^C from the user.

5. A way to solve this problem is outline now. This is what is typically done by a shell like bash, and
that is why your running mgr gets its pgid as its pid (not the pgid or pid of the shell). Before execing
job, a child process changes its process-group id by making the system call setpgid(). A safe new
process-group id for the child is its own pid (obtained by getpid()). Since ^C and ^Z apply only to
mgr’s process-group id, a suspended job will no longer receive these signals.

6. But then, a running job too will not be affected by ^C or ^Z (because these keyboard inputs apply
only to the processes with the mgr’s pgid). That too is undesirable. This problem too has a solution.
The parent has its custom-made ^C and ^Z handlers. Moreover, it knows which job is currently
running under it. So mgr’s signal-handler routines can be designed to send the approprate signals
(SIGINT or SIGTSTP) to the currently running job. Unfotunately, signal handlers do not accept any
custom-made parameters, so you have to use global variables. Too bad! Isn’t it?

That’s all! Go ahead, and incorporate the above suggestions one by one in the sequence given. See what
happens before incorporating each suggestion and after doing it. Stop when your program can supply an
output as given in the sample below.

Submit your final mgr.c.

Sample output

$ gcc -Wall -o job job.c
$ gcc -Wall -o mgr mgr.c
$./mgr
mgr> h
 Command : Action
 c : Continue a suspended job
 h : Print this help message
 k : Kill a suspended job
 p : Print the process table
 q : Quit
 r : Run a new job
mgr> p
NO PID PGID STATUS NAME
0 10906 10906 SELF mgr
mgr> r
Running job M
M M M M M M M M M M
mgr> p
NO PID PGID STATUS NAME
0 10906 10906 SELF mgr
1 10909 10909 FINISHED job M
mgr> r
Running job Y
Y Y ^Z
mgr> p
NO PID PGID STATUS NAME
0 10906 10906 SELF mgr
1 10909 10909 FINISHED job M
2 10910 10910 SUSPENDED job Y
mgr> r
Running job H
H H H H H H ^C
mgr> p
NO PID PGID STATUS NAME
0 10906 10906 SELF mgr
1 10909 10909 FINISHED job M
2 10910 10910 SUSPENDED job Y
3 10932 10932 TERMINATED job H
mgr> r
Running job E
E E E E E ^C
mgr> p
NO PID PGID STATUS NAME
0 10906 10906 SELF mgr
1 10909 10909 FINISHED job M
2 10910 10910 SUSPENDED job Y
3 10932 10932 TERMINATED job H
4 10939 10939 TERMINATED job E
mgr> r
Running job P
P P ^Z
mgr> r
Running job A
A A A A ^Z
mgr> p
NO PID PGID STATUS NAME
0 10906 10906 SELF mgr
1 10909 10909 FINISHED job M
2 10910 10910 SUSPENDED job Y
3 10932 10932 TERMINATED job H
4 10939 10939 TERMINATED job E
5 10941 10941 SUSPENDED job P
6 10942 10942 SUSPENDED job A
mgr> ^C
mgr> ^Z
mgr> c
Suspended jobs: 2, 5, 6 (Pick one): 5
P P P P ^Z
mgr> p
NO PID PGID STATUS NAME
0 10906 10906 SELF mgr
1 10909 10909 FINISHED job M
2 10910 10910 SUSPENDED job Y
3 10932 10932 TERMINATED job H
4 10939 10939 TERMINATED job E
5 10941 10941 SUSPENDED job P
6 10942 10942 SUSPENDED job A
mgr> k
Suspended jobs: 2, 5, 6 (Pick one): 2
mgr> p
NO PID PGID STATUS NAME
0 10906 10906 SELF mgr
1 10909 10909 FINISHED job M
2 10910 10910 KILLED job Y
3 10932 10932 TERMINATED job H
4 10939 10939 TERMINATED job E
5 10941 10941 SUSPENDED job P
6 10942 10942 SUSPENDED job A

mgr> r
Running job H
H H H ^C
mgr> p
NO PID PGID STATUS NAME
0 10906 10906 SELF mgr
1 10909 10909 FINISHED job M
2 10910 10910 KILLED job Y
3 10932 10932 TERMINATED job H
4 10939 10939 TERMINATED job E
5 10941 10941 SUSPENDED job P
6 10942 10942 SUSPENDED job A
7 11002 11002 TERMINATED job H
mgr> r
Running job W
W W ^Z
mgr> p
NO PID PGID STATUS NAME
0 10906 10906 SELF mgr
1 10909 10909 FINISHED job M
2 10910 10910 KILLED job Y
3 10932 10932 TERMINATED job H
4 10939 10939 TERMINATED job E
5 10941 10941 SUSPENDED job P
6 10942 10942 SUSPENDED job A
7 11002 11002 TERMINATED job H
8 11003 11003 SUSPENDED job W
mgr> c
Suspended jobs: 5, 6, 8 (Pick one): 5
P P P P
mgr> p
NO PID PGID STATUS NAME
0 10906 10906 SELF mgr
1 10909 10909 FINISHED job M
2 10910 10910 KILLED job Y
3 10932 10932 TERMINATED job H
4 10939 10939 TERMINATED job E
5 10941 10941 FINISHED job P
6 10942 10942 SUSPENDED job A
7 11002 11002 TERMINATED job H
8 11003 11003 SUSPENDED job W
mgr> c
Suspended jobs: 6, 8 (Pick one): 8
W W ^C
mgr> p
NO PID PGID STATUS NAME
0 10906 10906 SELF mgr
1 10909 10909 FINISHED job M
2 10910 10910 KILLED job Y
3 10932 10932 TERMINATED job H
4 10939 10939 TERMINATED job E
5 10941 10941 FINISHED job P
6 10942 10942 SUSPENDED job A
7 11002 11002 TERMINATED job H
8 11003 11003 TERMINATED job W
mgr> c
Suspended jobs: 6 (Pick one): 6
A A ^Z
mgr> p
NO PID PGID STATUS NAME
0 10906 10906 SELF mgr
1 10909 10909 FINISHED job M
2 10910 10910 KILLED job Y
3 10932 10932 TERMINATED job H
4 10939 10939 TERMINATED job E
5 10941 10941 FINISHED job P
6 10942 10942 SUSPENDED job A
7 11002 11002 TERMINATED job H
8 11003 11003 TERMINATED job W
mgr> r
Running job F
F F F F F ^C
mgr> r
Running job T
T T T T ^Z
mgr> p
NO PID PGID STATUS NAME
0 10906 10906 SELF mgr
1 10909 10909 FINISHED job M
2 10910 10910 KILLED job Y
3 10932 10932 TERMINATED job H
4 10939 10939 TERMINATED job E
5 10941 10941 FINISHED job P
6 10942 10942 SUSPENDED job A
7 11002 11002 TERMINATED job H
8 11003 11003 TERMINATED job W
9 11017 11017 TERMINATED job F
10 11018 11018 SUSPENDED job T
mgr> r
Process table is full. Quiting...
$

