
INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR

Stamp / Signature of the Invigilator

EXAMINATION (End Semester) SEMESTER (Spring)

Roll Number Section Name

Subject Number C S 3 1 2 0 2 Subject Name Operating Systems

Department / Center of the Student Additional sheets

Important Instructions and Guidelines for Students

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.

2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the

subject you are taking examination.

4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed

by the paper-setter.

5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However,

exchange of these items or any other papers (including question papers) is not permitted.

6. Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough

work. Report to the invigilator if the answer script has torn or distorted page(s).

7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the

desk for checking by the invigilator.

8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence

from the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly

prohibited inside the Examination Hall.

9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not

allowed to take away the answer script with you. After the completion of the examination, do not leave the seat until

the invigilators collect all the answer scripts.

10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or

exchanging information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and

do not indulge in unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

To be filled in by the examiner

Question Number 1 2 3 4 5 6 7 8 9 10 Total

Marks Obtained

Marks obtained (in words) Signature of the Examiner Signature of the Scrutineer

CS31202/CS30002 Operating Systems, Spring 2023–2024

End-Semester Test

24–April–2024 02:00pm–05:00pm Maximum marks: 60

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

Do not write anything on this page.

Questions start from the next page.

1. [Process synchronization]

(a) Assume that one or more producer process(es) insert items to a shared buffer of bounded size, and one

or more consumer process(es) extract items from that buffer. Prof. Foo proposes the following solution to

this problem. Prove/Disprove with proper justification whether this solution works. (2)

shared semaphore n = 0;

shared semaphore s = 1;

void producer()

{

while (true) {

item = produce_item();

wait(s);

insert_to_buffer(item);

signal(s);

signal(n);

}

}

void consumer()

{

while (true) {

wait(n);

wait(s);

item = extract_from_buffer();

signal(s);

consume(item);

}

}

Solution The code does not take into account the number of items stored in the buffer. As a result, buffer overflow may

happen. Note that this solution works for the unbounded-buffer variant of the producer-consumer problem.

(b) Four concurrent processes P,Q,R,S are running on a system. All these four processes access a shared

variable x initialized to zero. These four processes are implemented as follows. Each of the processes P and

Q reads x from memory, increments by one, stores it to memory, and then terminates. Each of the processes

R and S reads x from memory, decrements by two, stores it to memory, and then terminates. Each process

invokes the wait() operation on a counting semaphore count before reading x, and invokes the signal()

operation on the semaphore count after storing x to memory. The semaphore count is initialized to two (2).

What is the maximum possible value of x after all processes complete execution? Explain your answer. (4)

Solution Processes can run in many ways. Below is one of the cases in which x attains max value.

Semaphore count is initialized to 2.

Process P executes making count = 1 and x = 1, but it does not update the x variable.

Then, process R executes making count = 0. It decrements x, stores x = −2, and signals semaphore making

count = 1.

Now, process S runs completely making count = 0, x =−4, and finally count = 1 (after signal).

Now, process P stores x = 1 and signals the semaphore to count = 2.

Finally, process Q making x = 2.

Evidently, x cannot store a value larger than 2, since only two processes increment it (by 1).

— Page 1 of 15 —

(c) In the sleeping barber’s problem, consider the following code snippet of the barber and each customer.

The barber waits on the counting semaphore customers (initialized to 0), and each customer waits on the

counting semaphore barbers (initialized to 0). The binary semaphore mutex (initialized to 1) is used for the

mutually exclusive access of the shared variable waiting.

void barber (void)

{

while (true) {

wait(&customers);

wait(&mutex);

waiting = waiting - 1;

signal(&barbers);

signal(&mutex);

cut_hair();

}

}

void customer (void)

{

wait(&mutex);

if (waiting < CHAIRS) {

waiting = waiting + 1;

signal(&customers);

signal(&mutex);

wait(&barbers);

get_haircut();

} else {

signal(&mutex);

}

}

Explain the impact of swapping wait(&customers) with wait(&mutex) in the barber code (the customer

code remains as shown above). (2)

Solution Suppose that at some point of time, there are no customers, so we have the semaphore customers= 0. Now,

the barber first locks mutex, and starts waiting on customers. Subsequently, any new customer cannot lock

mutex, and keeps on waiting. So the program hangs.

Explain the impact of swapping signal(&mutex) with wait(&barbers) in the customer code (the barber

code remains as shown above). (2)

Solution Suppose again that at some point of time, there are no customers, so the barber is waiting on customers. A new

customer comes, locks mutex, and wakes up the barber by signaling customers. Then, the customer waits

on barbers without releasing mutex, so the barber after waking up cannot lock mutex, and waits indefinitely.

That is, the program hangs again.

— Page 2 of 15 —

2. [Deadlock]

(a) Consider the dining philosophers problem with five philosophers. Some of the philosophers (at least

one) is/are right-handed, and the other(s) (at least one) is/are left-handed. A right-handed philosopher first

picks the left fork and then the right fork, whereas a left-handed philosopher first picks the right fork and

then the left fork. With proper justification, prove/disprove whether deadlock is possible in this case. If

deadlock is possible, you must clearly mention a sequence which leads to the deadlock. If deadlock is not

possible, furnish a formal proof (handling only some specific situations does not construct a proof). (4)

Solution [Deadlock is not possible]

The numbers of left-handed and right-handed philosophers can be one of 1+4, 2+3, 3+2, and 4+1. We give

a proof for the first two cases. Because of circular symmetry, the other two cases can be analogously handled.

In the case 2+ 3, there are two sub-cases based on whether the two left-handed philosophers sit adjacent to

each other or not. In each of these cases, we number the forks as in the figure below.

LH RH

RHRH

F0

F4

F3

F2

F1

LH RH

RHRH

F

F4

F3

F2

F

LH

RH

RHRH

F0

F4

F3

F

F

LH

LH

1 0 2

1

Adjacent

Two left−handed philosophers

Not adjacent

One left−handed philosopher

RH

With this numbering, each philosopher first picks the smaller-numbered fork and then the larger-numbered fork

adjacent to him/her. But then, deadlock is not possible. A proof is given in the book. In short, if a deadlock

involves k philosophers for 2 6 k 6 5, then there is a cycle in the resource-allocation graph, and as we traverse

along the cycle, the fork numbers increase monotonically, which is impossible.

(b) On the next two pages, two resource-allocation graphs are given. For each graph, find the Allocation

and Need matrices and the Available vector corresponding to the graph. Subsequently, run the deadlock-

detection algorithm to determine whether each graph corresponds to a deadlock situation or not. Solving the

problem using any other method will deserve no credit. (3 + 3)

— Page 3 of 15 —

2 3

4 6

2 31

P1 P P

P P

R R R

5P

Solution [No deadlock]

We have

Allocation

R1 R2 R3

P1 1 0 0

P2 0 1 0

P3 0 1 1

P4 1 0 0

P5 0 1 0

P6 0 0 1

Need

R1 R2 R3

P1 0 1 0

P2 0 0 1

P3 1 0 0

P4 0 1 0

P5 0 0 1

P6 0 0 0

Available

R1 R2 R3

0 0 0

We start with Finish[i] = False for 1 6 i 6 6.

Need6 6 Available, so we set Finish[6] = True and Available = [0 0 1].

Need2 6 Available, so we set Finish[2] = True and Available = [0 1 1].

Need1 6 Available, so we set Finish[1] = True and Available = [1 1 1].

Need3 6 Available, so we set Finish[3] = True and Available = [1 2 2].

Need4 6 Available, so we set Finish[4] = True and Available = [2 2 2].

Need5 6 Available, so we set Finish[5] = True and Available = [2 3 2].

Since Finish[i] = True for all 1 6 i 6 6, the system is not in a deadlock state.

— Page 4 of 15 —

1 2

4 6

2 3

3

1

P P

P P

P

R R R

5P

Solution [Deadlock]

We have

Allocation

R1 R2 R3

P1 1 0 0

P2 0 1 0

P3 0 1 1

P4 1 0 0

P5 0 1 0

P6 0 0 0

Need

R1 R2 R3

P1 0 1 0

P2 0 0 1

P3 1 0 0

P4 0 1 0

P5 0 0 1

P6 0 0 1

Available

R1 R2 R3

0 0 0

We start with Finish[i] = False for 1 6 i 6 6.

For no i, we have Needi 6 Allocation, so the deadlock-detection algorithm terminates. Since Finish[i] = False

for many processes, the system is in a deadlock state.

— Page 5 of 15 —

3. [Physical memory]

(a) Prof. Barivas’s laptop computer uses an old version of FooOS. The computer has a total memory of

2 GB. Out of this, 192 MB is reserved for OS codes and kernel data structures, and 160 MB is reserved for

storing run-time data (like buffers) of user processes. The remaining part of the memory can be allocated to

user processes. The old version of FooOS does contiguous memory allocation. At some point of time, there

are five running processes P1, P2, P3, P4, and P5. Their memory requirements and the holes are shown in

the figure below.

123

377

OS

P2

P1

189

P3

Buffers

97

115

268

192

131

76

186P5

160

134P4

At this point of time, the following events happen in the given sequence.

A new process P6 of memory requirement 180 MB arrives.

A new process P7 of memory requirement 70 MB arrives.

A new process P8 of memory requirement 210 MB arrives.

The process P2 leaves.

No memory compaction (that is, defragmentation) is done by the OS. Instead, a

process which does not fit in any of the existing holes waits until some running

process(es) terminate(s) freeing enough memory to create a hole big enough to

accommodate the newly arrived process.

Clearly mention, for each of the following three contiguous memory-allocation

strategies, how the above four events are handled by FooOS. After each event,

you may redraw the picture or write the memory configuration as a sequence of

items. The initial configuration shown in the adjacent picture can be written in

text as: OS(192), Hole(123), P2(115), P5(186), Hole(268), P1(97), Hole(189),

P3(131), Hole(377), P4(134), Hole(76), Buffers(160). Assume that a process is

always allocated to the top side (the OS side) of an appropriate hole.

First-fit strategy

Assume that the first-fit pointer points to the 123 MB hole just before the above sequence of four events. (2)

Solution

7070 70

192

123

115

186

268

97

189

131

377

134
76

160

192

123

115

186

180

88
97

189

131

377

134
76

160

192

123

115

186

180

97

189

131

377

134
76

160

192

123

115

186

180

97

189

131

210

167

134
76

160 160

76
134

167

210

131

189

97

180

186

238

192OS

P2

P5

P1

P3

P4

Buffers Buffers

P4

P3

P1

P6

P5

P2

OS OS

P2

P5

P6
P7
P1

P3

P4

Buffers

OS

P2

P5

P6
P7
P1

P3

P8

P4

Buffers Buffers

P4

P8

P3

P1
P7
P6

P5

OS

P2 leavesP8 (210) arrivesP7 (70) arrivesP6 (180) arrives

18 18 18

— Page 6 of 15 —

Best-fit strategy (2)

Solution

192

123

115

186

268

97

189

131

377

134
76

160

192

123

115

186

268

97

180

131

377

134
76

160 160

70
134

377

131

180

97

268

186

115

123

192 192

123

115

186

210

97

180

131

377

134
70

160 160

70
134

377

131

180

97

210

186

238

192OS

P2

P5

P3

P1

P4

Buffers Buffers

P4

P3

P6

P1

P5

P2

OS OS

P2

P5

P1

P6

P3

P4
P7

Buffers Buffers

P7
P4

P3

P6

P1

P8

P5

P2

OS OS

P5

P8

P1

P6

P3

P4
P7

Buffers

P6 (180) arrives P7 (70) arrives P8 (210) arrives P2 leaves

6

9

58

6

9

58

9

6

9

Worst-fit strategy (2)

Solution

192

123

115

186

268

97

189

131

377

134
76

160 160

76
134

197

180

131

189

97

268

186

115

123

192 192

123

115

186

70

198

97

189

131

180

197

134
76

160

192

123

115

186

70

198

97

189

131

180

197

134
76

160

192

210

186

70

198

97

189

131

180

197

134
76

160

P6 (180) arrives P7 (70) arrives P8 (210) arrives P2 leaves

OS

P2

P5

P1

P3

P4

Buffers Buffers

P4

P6

P3

P1

P5

P2

OS OS

P2

P5

P7

P1

P3

P6

P4

Buffers Buffers

P4

P6

P3

P1

P7

P5

P2

OS OS

P8

P5

P7

P1

P3

P6

P4

Buffers

P8 waits

28

— Page 7 of 15 —

(b) Prof. Barivas installs a new version of FooOS on his laptop computer (the memory remains the same:

2 GB). The new version of FooOS supports paging, where each page (or frame) is of size 8 KB. Each

process is restricted to have a logical address space of maximum size 256 MB. As in Part (a), assume that

the OS reserves 192 MB + 160 MB for its operation. In the context of this new FooOS version, answer the

following questions. Assume that each page-table entry is of size 4 bytes. Show all your calculations.

How many frames can be allocated to user processes? (1)

Solution
(2048−192−160) MB

8 KB
= 212 K = 217,088

What is the maximum size (in MB) of a process whose page table fits in a single frame? (1)

Solution Each frame can store
8 KB

4 B
= 2 K page-table entries. Since each page is of size 8 KB, the maximum size of a

process whose page table fits in a single frame is 2 K×8 KB = 16 MB.

If hierarchical paging is used, what is the maximum number of frames needed to store the page table of a

single process? Use the minimum possible number of levels in the hierarchy, given the 256 MB restriction

on the logical address space of each process. (2)

Solution Two-level hierarchical paging suffices. By the above calculations, each frame can point to 16 MB of data.

Therefore a file of size 256 MB requires
256

16
= 16 second-level page-table frames. The addresses of these

16 frames can be stored in a single first-level page-table frame. Therefore the maximum storage needed for

storing the page table of a process is 1+16 = 17.

— Page 8 of 15 —

4. [Virtual memory]

(a) The page-reference string of a process with seven pages (numbered 0–6) is

0,1,3,6,2,1,3,5,3,0,4,1,0,5,3,2,0.

The number of memory frames allocated to the process is four (initially empty). Let p0, p1, p2, p3 (integers

in the range 0–6) be the pages of the process, currently in memory. The second-chance page-replacement

algorithm is used, with one reference bit per page (all initialized to 0). The starting position of the pointer

is at p0. Immediately after a page replacement, the reference bit of the newly loaded page is set to 1.

For each page reference in the above string, show the pages p0, p1, p2, p3 loaded to memory just after the

reference, along with the reference-bit values for these pages. Present your answer as a 2-d table with 4 rows

p0, p1, p2, p3 and 17 columns (one for each page in the reference string). Identify the page faults, and find

the total number of page faults. (3)

Solution In the following table, the page numbers pi are shown along with the reference bits in parentheses.

0 1 3 6 2 1 3 5 3 0 4 1 0 5 3 2 0

p0 0(1) 0(1) 0(1) 0(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(0) 4(1) 4(1) 4(1) 4(1) 4(0) 2(1) 2(1)
p1 1(1) 1(1) 1(1) 1(0) 1(1) 1(1) 1(0) 1(0) 0(1) 0(1) 0(0) 0(1) 0(1) 0(0) 0(0) 0(1)
p2 3(1) 3(1) 3(0) 3(0) 3(1) 3(0) 3(1) 3(1) 3(0) 1(1) 1(1) 1(1) 1(0) 1(0) 1(0)
p3 6(1) 6(0) 6(0) 6(0) 5(1) 5(1) 5(1) 5(0) 5(0) 5(0) 5(1) 3(1) 3(1) 3(1)

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

The pointer location where the last change was made is marked in red. The next page fault initiates a search

from the circularly next position. The page faults are shown by vertical arrows. There are 11 of them.

(b) An OS implements virtual memory using the LRU-approximation page-replacement algorithm based

on reference bits. A small process is allocated four frames. Initiated by timer interrupts, the reference bits

are checked at regular intervals. Initially, the reference bits are 0111 (page 0 is 0, the rest are 1). At the

four subsequent timer interrupts, the values are 1011,1010,1101,0010. If the page-replacement algorithm

is used with 8-bit counters (all initialized to 0), show the contents (bit-wise) of the four counters after the

last of the above timer interrupts. Assume that no page fault occurred during the above intervals. (3)

— Page 9 of 15 —

Solution Timer INT 0 Timer INT 1 Timer INT 2 Timer INT 3 Timer INT 4

Reference bits 0111 1011 1010 1101 0010

Page 0 00000000 10000000 11000000 11100000 01110000

Page 1 10000000 01000000 00100000 10010000 01001000

Page 2 10000000 11000000 11100000 01110000 10111000

Page 3 10000000 11000000 01100000 10110000 01011000

(c) A working-set model (with window size 4) is implemented to allocate frames to a process P. The page

references of the process P from time t = 1 onward are

c,c,d,b,c,e,c,a,a,d.

The initial working set at time t = 0 is {e,d,a}, where page a was referenced at time t = 0, page d was

referenced at time t = −1, and page e was referenced at time t = −2. In a table, show, for each page

reference: (i) the time t, (ii) the working set at time t, (iii) whether there is a page fault, and (iv) the number

of frames to be allocated to process P at time t. (3)

— Page 10 of 15 —

Solution Page reference Time Working set Hit/Miss

c 1 {e,d,a,c} M

c 2 {d,a,c} H

d 3 {a,c,d} H

b 4 {c,d,b} M

c 5 {d,b,c} H

e 6 {d,b,c,e} M

c 7 {b,e,c} H

a 8 {e,c,a} M

a 9 {e,c,a} H

d 10 {c,a,d} M

The number of pages allocated at any time equals the size of the working set at that time.

(d) A memory-management module implements a local page-replacement policy. Prof. Foo claims that

unlike the global page-replacement policy, here the execution time of a process P is determined only by

the execution sequence and the behavior of the process P, and no other process in any way can affect the

execution time of the process P. Prove/Disprove (with proper justification) the claim of Prof. Foo. (2)

Solution The claim is false. For example, if one or more processes thrash, a non-thrashing process needs to wait more

than the usual time in the queue for doing disk I/O.

(e) Prove/disprove with proper justification: The optimal page-replacement algorithm may suffer from

Belady’s anomaly. (2)

Solution False. See book for justification.

— Page 11 of 15 —

5. [Storage management]

A lecture by Prof. Sad is stored in the file combinatorics.mkv. The size of this file is 567,890,123 bytes.

The HDD that stores this file has capacity 1 TB, and uses 1 KB blocks. In connection with the storage of

Prof. Sad’s video in the HDD, answer the following parts. In each part, show your calculations.

(a) What is the smallest number of bits (should be a multiple of 8), that can be used to address the blocks

of the HDD? (1)

Solution The number of blocks in the HDD is
1 TB

1 KB
= 1 G = 230. Therefore, 32 bits (that is, 4 bytes) are needed to

address the blocks.

(b) How many data blocks are needed in the HDD to store the content of the file? (1)

Solution

⌈

567,890,123

1,024

⌉

= 554,581 data blocks are needed.

(c) Suppose that the blocks are addressed as derived in Part (a). If a linked allocation of storage is

used with the next-block links stored in the blocks themselves, how many blocks are needed to store

combinatorics.mkv? (1)

Solution The amount of data stored in each block is 1024−4 = 1020 bytes. Therefore Prof. Sad’s lecture video requires
⌈

567,890,123

1020

⌉

= 556,756 blocks.

(d) Explain how the file is stored if the HDD uses MSDOS’s FAT file system. Clearly mention the index

blocks and their linking in the file allocation table. (2)

Solution The FAT format does not store the links in the blocks, so 554,581 data blocks are needed. Let the

addresses of these blocks be b1,b2, . . . ,b554581. Then, the global file-allocation table T stores T [bi] = bi+1

for i = 1,2, . . . ,554580 and b554581 = NULL.

(e) In this part, assume that the HDD uses the Unix inode format with a total of 15 pointers in the top-level

index block. Clearly mention the index blocks (along with their links to index or data blocks) that are used

for locating the data blocks of the lecture video. Explain how many disk-block accesses are required to read

the 67,890,123-th byte of the file. (4 + 1)

— Page 12 of 15 —

Solution The detailed organization of the 554,581 data blocks and the index blocks at various levels is given in the

following figure. The 67,890,123-th byte is in the block 1+ ⌊67890123/1024⌋ = 66299. The block storing

this byte can be located along the path marked red. Five disk accesses are required to retrieve this byte.

524557

524812

554508

554581

NULL

NULL

1
2
3
4
5
6
7
8
9
10
11
12

13
14

15

268

524

271
270
269

525
526
527

780

782
781

783

1036

65549
65550
65551

65804

131085

131340

131341

131596

196621

196876

NULL

66060

65805

66061

66299

66316

— Page 13 of 15 —

6. [Mass-storage structure]

(a) Consider a disk where each movement of the arm to the adjacent cylinder takes a seek time of 6 ms, the

rotation speed is 3600 rpm, and each track holds 1 MB of data. Each disk block is of size 4 KB. The SCAN

algorithm is used for disk scheduling. A file of size 32 KB is stored on the disk. The i-th block of the file

(i starts from 0) is stored on cylinder (30× i) % n, where n = 100 is the total number of cylinders (cylinder

numbers: 0–99). Compute the total time required to read the complete file. Assume that the disk head is

initially on cylinder 25 moving up (that is, towards larger cylinder numbers). Assume also that after the

correct cylinder is located, there is a rotational latency of half of a single revolution time, before the transfer

of the data block can start from that cylinder. (4)

Solution Seek time / track = 6 ms

Block size = 4 KB, file size = 32 KB, total 8 blocks

Blocks for storing the file are 0,30,60,90,20,50,80,10

Seek movements for SCAN: 155 (25 → 90 → 0)

Total seek time = 155×6 = 930 ms

One complete revolution time = 60000/3600 ≈ 16.67 ms.

One half revolution time = (60000/3600)/2 ≈ 8.33 ms.

Total rotational latency = 8×8.33 = 66.64 ms.

Data transfer time for one block = ((16.67 ms/1 MB)×4 KB.

Data transfer time for the entire file = ((16.67 ms/1 MB)×32 KB = 0.52 ms.

Total time to read file = 930+66.64+0.52 = 997.16 ms.

— Page 14 of 15 —

(b) A hard disk with 16 recording surfaces (0–15) has 16384 cylinders (0–16383), and each cylinder

contains 64 sectors (0–63). The data storage capacity in each sector is 512 bytes. Each sector is addressed

by a triple 〈S,C,T 〉, where S,C,T stand for the surface number, the cylinder (or track) number, and the

sector number, respectively. For a sector 〈S,C,T 〉 (not the last one), the next sector is defined to be

nextof〈S,C,T 〉=

〈S,C,T +1〉 if T < 63

〈S,C+1,0〉 if T = 63 and C < 16383

〈S+1,0,0〉 if T = 63 and C = 16383

A file of size 243987 KB is stored in the disk, and the starting disk location of the file is 〈9,12000,30〉.
What is the address of the last sector of the file if the file is stored in a contiguous manner? (3)

Solution In the mixed-radix system, 〈S,C,T 〉 stands for the sector numbered (16384×64)×S+64×C+T . The file of

size 243987 KB needs 2×243987 = 487974 = 64×7624+38 sectors. Thus, the last sector has the number

(

(16384×64)×9+64×12000+30
)

+
(

64×7624+38
)

−1

= (16384×64)×9+64× (12000+7624)+(30+38−1)

= (16384×64)×9+64× (12000+7624)+67

= (16384×64)×9+64× (12000+7624)+64+3

= (16384×64)×9+64× (12000+7624+1)+3

= (16384×64)×9+64×19625+3

= (16384×64)×9+64× (16384+3241)+3

= (16384×64)×10+64×3241+3.

Therefore, the last sector of the file has address 〈10,3241,3〉.

— Page 15 of 15 —

Rough work

Rough work

Rough work

