Exercise set 2 — Solutions

1. Let H and H’ be the two components of 7" — e and let FF C E(T") consist of the edges of 7" with one
endpoint in V' (H ), the other in V' (H"). Since T” is connected, F' # (). Furthermore, since T has the unique
edge e joining H and H', F C E(T") \ E(T). T' + e contains a unique cycle C of which e is an edge. C'
leaves H and enters H' via e. In order to complete the cycle, one must use one edge e’ of E(T”) to come
back from H' to H. But then ¢’ € F. It is now clear that for this ¢’ both T'— ¢ + ¢’ and 77 + ¢ — ¢ are
spanning trees of G. (Note that the cycle C, after coming back to H, may again enter H’ and subsequently
return back to H. Every time it does so, it has to use two new edges from F. That is, the choice of ¢’ is not

always unique.)

2. (a) [if] e is not a cut-edge of G. Then G \ e is connected and hence has a spanning tree 7. But then 7" is a
spanning tree of G too and e ¢ E(T).

[only if] Let e be a cut-edge of G with endpoints u and v. The only u, v-path in G is the edge e (since
another u, v-path in G produces a cycle in conjunction with e). Let T" be a spanning tree in GG. Since T is

connected, 7" contains a u, v-path which has to be the edge e. Thus e € E(T').

(b) [if] Let e be a non-loop edge of G and let v be an endpoint of G. We can grow a BFS (or DFS) spanning
tree of G rooted at v and containing the edge e.

[only if] A tree is a simple graph and hence does not contain a loop.

3. Let S be the set of all spanning trees of K,,. By Cayley’s formula |S| = n"~2. In order to get 7(K,, \ e) for
a given e € E(K,) we have to subtract from n"~2 the number k of spanning trees of K,, containing

the particular edge e.

Because of symmetry £ is independent of the choice of e.
o := > pege(T). Since each tree 7" in the sum has n — 1 edges, we have 0 = (n —

Look at the sum
1)n""2. On the

other hand, each edge of K, is counted k times in the above sum, so that 0 = k x e(K,,) = kn(n —1)/2.

Equating the two expressions for o gives k = 2n" 3. Thus 7(K,, \ €) =

4. Let the partite sets of K, be X and Y with X = {x,.
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t 0 -t 0 0 0

t 0 —t 0 0 0

0 0 -« t —t 0 0 - 0
T(K)=|0 0 - 0 t —1 —1 --. —1|.

-1 -1 -+ =1 =1 s 0 - 0

-1 -1 -+ =1 =1 0 5 - 0

-1 =1 -+ =1 =1 0 0 - s

t 0 --- 0 —t 0 o --- 0
0 t -t 0 0 0
0 0 t -t 0 0 0
F(K) =0 0 0 1 -1 -1
00 0 —(s—1) s 0 0
00 0 —(s—=1) 0 s 0
00 - 0 —(s—1) 0 0 - s

Adding 1/s times each of the last ¢ rows to the (s — 1)-st row then yields

t 0 --- 0 -t 0 0 0
0 t 0 —t 0 0 0
0 0 t —t 0 0 0
T(Ksq) = |0 0 0 /s 00 0.
00 0 —(s—=1) s O 0
0 0 0 —(s—1) 0 s 0
00 - 0 —(s—1) 0 0 - s

Finally we add s times the (s — 1)-st row to each of the first s — 2 rows to get

t 0 - 0 0 0 0 0
0 t 0 0 0 0 0
00 t 0 0 0 0
T(Ky) =10 0 0 t/s 00 0.
00 0 —(s—1) s 0 0
00 0 —(s—1) 0 s 0
00 - 0 —(s—1) 0 0 - s

Now 7 (K ) is the determinant of a lower triangular matrix and hence is equal to the product of the entries
in the main diagonal of this matrix, i.e., 7(Ks) = t*72(t/s)s! = st~ 1571,

. We will prove that G is the cycle C,,. Since G \ u is a tree for every u € V(G) and n(G) > 3, G does
not contain multiple edges and loops, i.e., G is simple. If G has more than two components, then deleting
a vertex u in one component leaves other components unaffected, i.e., leaves the graph disconnected, a



least 2 vertices. Again deleting a vertex u € V (H) leaves a disconnected graph that cannot be a tree. Thus
G has only one component, i.e., GG is connected.

By hypothesis G has no cut vertices and hence no cut edges (Exercise 14), i.e., every edge of G lies on
a cycle. If G contains more than one cycle, we can choose two cycles C; and Cy of G and a vertex
u € V(C1) \ V(Cy). But then G \ u contains the cycle Cy and hence is not a tree. Therefore, G contains
exactly one cycle.

. (a) If any two of u, v, w lie in different components of G, then the triangle inequality clearly holds. So
assume that all of these three points lie in the same component of G. Let P be a shortest u, v-path and
@ a shortest v, w-path. The u,w-walk consisting of P followed by () contains a u,w-path R. Hence
d(u,w) < |R| < |P1| + |P2| = d(u,v) + d(v, w).

(b) Let rad G = ¢(u) and diam G = ¢(u’) = d(u/,v"). But then by the triangle inequality diam G <
d(u',u) +d(u,v') < e(u) + e(u) = 2¢(u) = 2rad G.

(¢c) If r =d =1, consider P,. If r = 1 and d = 2, consider P3. So assume that » > 1. Take G to be
the connected graph that decomposes into a cycle C' = (5, and a path P = P, . such that C' and P
share exactly one vertex « which is also an endpoint of P. Let v be the other endpoint of P. (If d = r, then
v = u.) One can readily check that rad G = e€(u) = r and diam G = ¢(v) = (d —r) +r = d.

. (a) G = K,. (Any two vertices of GG do not form an independent set.)

(b) The only non-trivial component of G is either a star or a 3-cycle. (Let M := {wv} be a maximal
matching of GG. Let n; (resp. ny) be the number of neighbors of w (resp. v) other than v (resp. w), which are
not neighbors of v (resp. ). Also let n3 be the number of common neighbors of u and v. One can easily
check that if at least two of nq, no, n3 are non-zero, then M is not maximal. Also if n; = ny = 0, we must
have ng = 1.)

(¢) The only non-trivial component of G is a star. (Every edge of G is incident to the vertex in a minimum
vertex cover.)

(d) G is an edge. (Every vertex of G is incident to the edge in a minimum edge cover.)

. (a) Let G be an X, Y-bigraph.
[if] By hypothesis |N(S)| > |S]| for any S C X so G has a matching that saturates X, i.e., |Y| > |X|. By
reversing the roles of X and Y one can similarly prove that | X| > |Y|.

[only if] A perfect matching of G saturates both X and Y and hence by Hall’s theorem | N (U)| > |U| for
every U C X and also |[N (V)| > |V| forevery V C Y. Given S C V(G) one can write S as the disjoint
union U UV, where U = SN X and V = S NY. The neighborhoods of U and V" are also disjoint and so
NS = N+ IN(V)| = U]+ V] = |S].

(b) The complete graph Ko,11, n € N, satisfies

0 if S =0,
IN(S)| = {Zn if S| = 1,
on+1 if|S| > 2,

that is, [N(S)| > |S| for any S C V(K2y,+1). Since Ka,41 contains an odd number of vertices, it cannot
have a perfect matching.

. Let S be a maximum independent set in G (so that |S| = a(G)) and let T := V(G) \ S. Since S is
an independent set, the sum »_, ., d(v) counts each edge of G at least once, i.e., e(G) < >, crd(v) <
(n(G) — a(G))A(G). Rearranging gives a(G) < n(G) — e(G)/A(G).

If G is regular, by the degree sum formula we get 2¢(G) = n(G)A(G), i.e., e(G)/A(G) = n(G)/2, so that
o(G) < n(G) - e(G)/A(G) = n(G)/2
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in M (i.e. the set of vertices saturated by M ),. Q covers all the edges of G, for, if nbt,'theniG has an e(ige
with unsaturated endpoints v and v. But then adding this edge to M will give a matching bigger than M, a
contradiction.

For every k € N we have o (kP3) = k and 3(kP3) = 2k.

The statement is true. The proof follows from the fact that a tree is acyclic and from the following lemma.

Lemma: Let G be a graph with two distinct perfect matchings M and M’. Then every component of the
symmetric difference M A M’ is an (even) cycle.

Proof Every component of M A M’ is either an even cycle or a path, the edges in which alternate between
M\ M'"and M’ \ M. Let u be an endpoint of such a path P. In view of symmetry we can assume that the
edge e of P incident on u belongs to M \ M. The only edge incident to a vertex of degree 1 must belong
to every perfect matching. Thus dp(u) > 2. Since M’ saturates v anyway, we can choose a neighbor v of u
not in P such that uv € M. Since e € M, uv ¢ M. Thus uv € M’ \ M. This implies that P cannot be a
component of M A M’. )

[if] Define a function f : V(T') — V(T') as follows. Choose v € V(T'). By hypothesis 7"\ v has only one
odd component, call it /. If v has two distinct neighbors w1, us in H, then a u;, us-path in H forms a cycle
with the edges vuy and vus. Thus there exists a unique neighbor v of v in H. Define f(v) := u.

First we claim that f is injective. Assume not, i.e., f(v1) = f(v2) = w for some v; # v9. Think of T'
as a tree rooted at u. Let the children of u be vy, ve,...,vg. Call T; the subtree of 1" rooted at v;. Since
f(v1) = u, every subtree rooted at a child of v; is of even order. Therefore, n(7}) is odd. Similarly, n(7%)
is also odd. But then 7"\ u has at least two odd components (73 and T3), a contradiction to the hypothesis.

Next we claim that f2 is the identity map on V(T'). Choose v € V/(T'). Since V/(T) is finite, the elements
v, f(v), f2(v), f3(v), . .. cannot be all distinct. Choose 0 < k < I'such that f*(v), ..., f/=1(v) are pairwise
distinct, but f*(v) = f!(v) for some I > k. Since T" does not contain loops, I > k + 1. If | > k -+ 2, then
(fE(w), ff*1(v),..., f=1(v)) is a cycle in T, a contradiction. So I = k + 2, i.e., f¥*2(v) = f¥(v). Since
f is a map from a finite set to itself, its injectivity implies its bijectivity. Applying the function f~* in the
last equation gives f2(v) = v, as claimed.

Thus f produces the desired pairing of vertices for a perfect matching.

[only if] Let 7" have a perfect matching. By Tutte’s 1-factor theorem o(7"\ v) < 1. If o(T"\ v) = 0, then T
contains an odd number of vertices. No graph with an odd number of vertices can have a perfect matching.

Choose (nonempty) S C V(G) and count the number k of edges from S to the odd components of G\ S (as
in the case of a corollary proved in the class). GG being 3-regular, counting such edges using their endpoints
in S gives k < 3|95)|.

Let Hy, ..., H) be all the odd components of G \ S (where [ = o(G \ S)) and let [; be the number of edges
between H; and S. The degree sum formula for H; and the 3-regularity of G yield 2e(H;) = 3n(H;) — m;.
Since n(H;) is odd, we then have m;. Finally since G has at most two cut-edges m; = 1 for at most two 4
and m; > 3 otherwise. Therefore, k > 30(G \ S) — 4.

Combining the two inequalities involving k yields o(G\ S) < |S|+4/3. Since o(G\ S) and | S| are integers,
the last inequality implies o(G \ S) < |S| + 1. Assume that o(G \ S) = |S| + 1. It is a straightforward
check that in this case n(G) is odd. But the degree sum formula for G gives 2¢(G) = 3n(G), i.e., n(G) is
even, a contradiction. Thus o(G \ S) < |S|. Now apply Tutte’s theorem.

P (an edge) provides a counterexample to the given statement. The corrected assertion is: Let e be a cut-
edge in G. If the component of G containing e has more than two vertices, then at least one endpoint of G
is a cut vertex.

For the proof of the corrected assertion, let H be the component of GG containing e and let « and v be the
endpoints of e. Further let H; and Hs be the two components of H \ e with w € V(H;) and v € V(Hs).
Since n(H) > 3, (at least) one of H; and H has (at least) two vertices. Because of symmetry we can
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separates w from v.

Choose two non-adjacent vertices in the Petersen graph G. These two vertices have the label ab and ac
for some permutation a, b, ¢, d,e of 1,2,3,4,5. G contains three pairwise internally disjoint ab, ac-paths:
i) ab, de, ac, ii) ab, cd, be, ac, and iii) ab, ce, bd, ac. By Menger’s theorem G is 3-connected, i.e, x(G) > 3.
Also k(G) < §(G) = 3. Thus k(G) = 3. But then x'(G) = 3 (since x(G) < £'(G) < §(G), or since a
3-regular graph H has k(H) = x'(H)).

Let F =[S, S] and F' := [S’, S’] be two different edge cuts of G. Then S A S’ is a non-empty proper subset
of V(G). One can readily verify that F' A F' = [T, T).

The statement is false. A counterexample is provided by the 2-connected . )
graph shown in the adjacent figure. Consider the u,v-path P shown by
bold edges. The graph contains no u, v-path internally disjoint from P.

[if] Clearly G is connected (By hypothesis G satisfies a condition stronger than mere connectivity). Choose
x € V(G). We will show that G \ z is connected. Choose y,z € V(G \ z). By hypothesis there exists an
x,y-path P in GG through z. Deletion of x retains the part of P from z to y.

[only if] Suppose that GG is 2-connected and choose three pairwise
distinct vertices x,y,z € V(G). By Menger’s theorem G contains
two internally disjoint z, z-paths P; and P,. Furthermore, G \ x
contains a y, z-path ). Let w be the vertex on (), that is nearest to
y and that is also in V(Py) U V (P;). By symmetry let us assume that
w € V(P2). (Note that we can have w = z, in which case w belongs
to V(Py) as well. Also w # x.)

Py, the z, w-subpath of P, and the w, y-subpath of () give us an x, y-
path through z.

y
Consider the graph GG shown in the adjacent figure. ,
The vertices vy, ...,v, each has pairwise distinct 5\: !
sets of d neighbors in K,;511. v1,...,vs—1 has one — ’
. . e
neighbor each in K, 1, whereas v, has " — k + 1 5\>.2727
. . . . —_—
ne%ghl.aors in 'K s+1- All these neighbors in K5 are | v e
pairwise distinct. 5/>'77
One can now verify that §(G) = § (look at the vertex Kisel K41
in K511 having no neighbor in {v1,...,v.}).
: . : L — Vel Gl
Consider a pair (z, y) of non-adjacent vertices in this 3 —
. . | e
graph. If = v; and y = v, for some i # j, then - w o<1
there exist 0 > & internally disjoint v;, v;-paths via 5/>'<e\
©

Kysi1. fx =u € V(Kys541) and y = v;, we again

get § > k internally disjoint u, v;-paths via Ks5.1. If x = v; and u = w € V(Kg41, we get & internally
disjoint v;, w-paths, one via e;, the others via K51, v; and e; foreach j # 4. Finally, if v = u € V(K 541)
and y = w € V(Ks41), then every u, w-path must consist of one of the vertices vy, ..., v,. Also we can
arrange exactly x u, w-paths one through each v;. By Menger’s theorem x(G) = k and {vy,...,v.} is a
minimum vertex-cut of G.

A similar study shows that x'(G) = «/ and {e1, ..., e} =[5, 5], S = V(Ks,1), is a minimum edge-cut
of G. (Use the Elias-Feinstein-Shannon-Ford-Fulkerson theorem.)
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vertices of G. Let us represent the cor}esi)onding vertices in B(G) by by, ...,bsand uy, . . ., u; respectively.
If t = 0, then B(G) is the single-vertex tree and has no leaf. So let us concentrate on the case that t > 0, so
that s > 1.

Let B be a block of G. Since G is connected and B does not contain all the vertices of GG, there exists
x € V(B) such that x has a neighbor y outside B. The edge xy lies in a separate block B’ of G. But then
B and B’ share = and so z is a cut vertex of GG. Thus every block contains at least one cut vertex.

By definition B(G) is simple. In order to prove that B((G) is connected, it suffices to produce a b;, u;-path
for every 4, j. B; contains a cut vertex of G, say, vj. Since G is connected, there is a vy, vj-path P in G. Let
us follow the path P starting from v;,. We simultaneously generate a b;, u;-walk (). Initially we are at vy, in
P and b; in . Assume that at some stage we are at z in P and b; in Q). If x is not a cut-vertex of G, we
remain at b; in ) and if P is not yet finished, we proceed to the next vertex on P. If x is a cut-vertex, say
U, We move from b; to u,, in ), and if P is not finished and the next edge on P belongs to B,,, we move
from w,, to b, and proceed to the next vertex on P. The resulting b;, uj-walk ) contains a b;, u;-path.

Now suppose that (b;,, u;, , ..., bi,,u;,) is a cycle in B(G). Since B(G) is simple, » > 3. I will show that
B := |Jj,—; Bi, is 2-connected, contradicting the maximality of each block B;,. Choose z € V(B) and
y,z € V(B) \ {«}. By symmetry we can assume that x € V (B, ). Since B;, is a block and has more than
one vertex (G contains no isolated vertex), B;, \ x is connected. Choose w € V' (B;,) \ =. Then there is a
y, w-path P; and a w, z-path P, in B \ z. P; and P» produce a y, z-walk which contains a y, z-path. (See
the following figure explaining two possibilities for z. P; (resp. P») may lie entirely in B; , if y (resp. z) is
in V(B;,) \ {z}. If both y and z are in V'(B;,) \ {z}, then one directly gets an y, z-path in the connected

graph B;, \ z.)
&S =

(= (XD

Thus B(G) is a tree. What remains is to show that a cut vertex of G must belong to at least two blocks of
G. Assume the contrary, that is, a cut vertex x belongs to only one block B of GG. If x has a neighbor y
outside B, then the edge xy belongs to a different block B’ so that x belongs to B’ as well. So z does not
have a neighbor outside B. Now choose any y, z € V(G \ z). Since G is connected, there is a y, z-path P
in G. If P does not involve B, it remains in G \ {z}. Otherwise let ¢’ and 2’ be the first and last vertices of
P which are in V(B). (We might have 3y’ = y and/or 2’ = 2.) Since B is 2-connected, there is a y’, z’-path
Q in B\ x. The y, y'-subpath of P, @) and the z’, z-subpath of P give a y, z-path in G \ {z}. Thus G \ {z}
is connected, i.e., z is not a cut vertex of G, a contradiction.

We start by proving that for any plane graph H the dual H* is connected. For the proof let X, be the
unbounded face of H and X any other face of H. If we draw a (semi-infinite) ray from the pointx € V (H*)
representing X, the ray will eventually go the interior of X, (because all faces of H other than X, are
bounded). From a point on the ray in the interior of X, there is a polygonal curve ending in x,, (the vertex
representing X,,) and lying entirely inside X,,. We can distort the ray, if necessary, to get a simple polygonal
curve C' starting from x and ending in x,, such that C' does not go through any vertex of H. C' crosses a
finite number of edges of H (at their internal points). Every time it does so, it may or may not move from
one face of H to another. In any case, C traverses a finite sequence of faces of H, in which two consecutive
faces share an edge. This gives us an x, z:,,-path in H*. But then for any =, 2’ € V(H*) an x, x,- and an
x', x,-path yield an z, z’-walk and hence an z, 2’-path in H*. Thus H* is connected, as claimed.

First assume that G is disconnected. Taking H = G* in the last paragraph shows that H* = (G*)* is
connected and hence cannot be the same as G.

For the converse, let G be connected. Let us draw G* in such a way that each edge of G* crosses only the
corresponding edge of G (only once) and no other edge of G or G*. Now let X* be a face of G*. Any edge
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the face X™* and must terminate before leaving X ™*. That is, X* contains at least one vertex of G. Assume
that some face of G* contains more than one vertex of G, i.e., n > f*. But f = n* and e = e*. Since G*
is connected, Euler’s formula gives n* — e* + f* = 2. Combining all these findings gives n — e + f > 2,
i.e., G is not connected, a contradiction. Thus every face of G* contains exactly one vertex of (G. But then
we can use each e as (e*)* and obtain G as the dual of (G*)*.

It is sufficient to prove the assertion for a connected graph, since otherwise we could add an appropriate
number of edges and prove the assertion for the resulting connected outerplane graph. The length of the
outer face of GG is n, whereas the length of every other face is at least 3 (since G is simple). Therefore,
the degree sum formula for G* gives 2¢ = 2¢* > n + 3(f — 1). Since G is plane also, n — e + f = 2.
Eliminating f gives e < 2n — 3.

Consider the following two cases:
Case 1: G is not planar.

Then G is clearly non-outerplanar too. Also G contains a subdivision of K5 or K3 3 and hence a subdivision
of K. 4 Or K 2,3-

Case 2: G is planar.

Consider the graph H obtained by adding a new vertex to G and joining this new vertex to every vertex in
G. It follows that GG is outerplanar <= H is planar <= H contains no subdivision of K5 or K33 <=
G contains no subdivision of K4 or K3 3. This is exemplified in the following figure:

G is outerplanar

G is not outerplanar

(a) Itis sufficient to prove the assertion for connected graphs. By Euler’s formula n — e + f = 2. Since G
has girth k, every face of G has length at least k, i.e., 2¢ > kf. Eliminating f gives e < (n — 2) k—f2

(b) The Petersen graph has girth 5. By Part (a) every simple planar graph with 10 vertices and of girth 5
contains at most 8 x 5/3 = 13.333.. ., i.e., at most 13 edges. But the Petersen graph has 15 edges.

(a) Let G = G*. Since G* is connected (Exercise 21),
G is also connected. By Euler’s formula n — e + f = 2.
But the isomorphism G = G* implies n = n* = f, i.e.,
n—e+n—21e.,e=2n—2.

(b) Let GG be the cycle C,_; plus another vertex joined to
each vertex of C,_;. Then G = G*. The adjacent figure
explains the construction forn = 7.



