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Exercise set 2 – Solutions

1. Let H and H ′ be the two components of T − e and let F ⊆ E(T ′) consist of the edges of T ′ with one
endpoint in V (H), the other in V (H ′). Since T ′ is connected, F 6= ∅. Furthermore, since T has the unique
edge e joining H and H ′, F ⊆ E(T ′) \ E(T ). T ′ + e contains a unique cycle C of which e is an edge. C
leaves H and enters H ′ via e. In order to complete the cycle, one must use one edge e′ of E(T ′) to come
back from H ′ to H . But then e′ ∈ F . It is now clear that for this e′ both T − e + e′ and T ′ + e − e′ are
spanning trees of G. (Note that the cycle C, after coming back to H , may again enter H ′ and subsequently
return back to H . Every time it does so, it has to use two new edges from F . That is, the choice of e′ is not
always unique.)

2. (a) [if] e is not a cut-edge of G. Then G \ e is connected and hence has a spanning tree T . But then T is a
spanning tree of G too and e /∈ E(T ).

[only if] Let e be a cut-edge of G with endpoints u and v. The only u, v-path in G is the edge e (since
another u, v-path in G produces a cycle in conjunction with e). Let T be a spanning tree in G. Since T is
connected, T contains a u, v-path which has to be the edge e. Thus e ∈ E(T ).

(b) [if] Let e be a non-loop edge of G and let u be an endpoint of G. We can grow a BFS (or DFS) spanning
tree of G rooted at u and containing the edge e.

[only if] A tree is a simple graph and hence does not contain a loop.

3. Let S be the set of all spanning trees of Kn. By Cayley’s formula |S| = nn−2. In order to get τ(Kn \ e) for
a given e ∈ E(Kn) we have to subtract from nn−2 the number k of spanning trees of Kn containing
the particular edge e. Because of symmetry k is independent of the choice of e. Look at the sum
σ :=

∑
T∈S e(T ). Since each tree T in the sum has n − 1 edges, we have σ = (n − 1)nn−2. On the

other hand, each edge of Kn is counted k times in the above sum, so that σ = k × e(Kn) = kn(n− 1)/2.
Equating the two expressions for σ gives k = 2nn−3. Thus τ(Kn \ e) = nn−2 − k = (n− 2)nn−3.

4. Let the partite sets of Ks,t be X and Y with X = {x1, . . . , xs} and Y = {y1, . . . , yt}. The Q-matrix under
the vertex ordering x1, . . . , xs, y1, . . . , yt is then

Q =




t 0 · · · 0 −1 −1 · · · −1
0 t · · · 0 −1 −1 · · · −1
...

...
. . .

...
...

...
. . .

...
0 0 · · · t −1 −1 · · · −1
−1 −1 · · · −1 s 0 · · · 0
−1 −1 · · · −1 0 s · · · 0

...
...

. . .
...

...
...

. . .
...

−1 −1 · · · −1 0 0 · · · s




.

Let us choose to delete the first row and the first column of Q to get

τ(Ks,t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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−1 −1 · · · −1 s 0 · · · 0
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. . .
...

−1 −1 · · · −1 0 0 · · · s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.



Here the t’s appear in s− 1 rows. Subtracting the (s− 1)-st row from each of the first s− 2 rows gives:

τ(Ks,t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t 0 · · · 0 −t 0 0 · · · 0
0 t · · · 0 −t 0 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · t −t 0 0 · · · 0
0 0 · · · 0 t −1 −1 · · · −1
−1 −1 · · · −1 −1 s 0 · · · 0
−1 −1 · · · −1 −1 0 s · · · 0

...
...

. . .
...

...
...

...
. . .

...
−1 −1 · · · −1 −1 0 0 · · · s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Adding 1/t times each of the first s− 2 rows to each of the last t rows gives:

τ(Ks,t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t 0 · · · 0 −t 0 0 · · · 0
0 t · · · 0 −t 0 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · t −t 0 0 · · · 0
0 0 · · · 0 t −1 −1 · · · −1
0 0 · · · 0 −(s− 1) s 0 · · · 0
0 0 · · · 0 −(s− 1) 0 s · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · 0 −(s− 1) 0 0 · · · s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Adding 1/s times each of the last t rows to the (s− 1)-st row then yields

τ(Ks,t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t 0 · · · 0 −t 0 0 · · · 0
0 t · · · 0 −t 0 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · t −t 0 0 · · · 0
0 0 · · · 0 t/s 0 0 · · · 0
0 0 · · · 0 −(s− 1) s 0 · · · 0
0 0 · · · 0 −(s− 1) 0 s · · · 0
...
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. . .
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. . .
...

0 0 · · · 0 −(s− 1) 0 0 · · · s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Finally we add s times the (s− 1)-st row to each of the first s− 2 rows to get

τ(Ks,t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t 0 · · · 0 0 0 0 · · · 0
0 t · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · t 0 0 0 · · · 0
0 0 · · · 0 t/s 0 0 · · · 0
0 0 · · · 0 −(s− 1) s 0 · · · 0
0 0 · · · 0 −(s− 1) 0 s · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · 0 −(s− 1) 0 0 · · · s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Now τ(Ks,t) is the determinant of a lower triangular matrix and hence is equal to the product of the entries
in the main diagonal of this matrix, i.e., τ(Ks,t) = ts−2(t/s)st = st−1ts−1.

5. We will prove that G is the cycle Cn. Since G \ u is a tree for every u ∈ V (G) and n(G) > 3, G does
not contain multiple edges and loops, i.e., G is simple. If G has more than two components, then deleting
a vertex u in one component leaves other components unaffected, i.e., leaves the graph disconnected, a



contradiction to that fact that G \ u is a tree. If G has exactly two components, then a component H has at
least 2 vertices. Again deleting a vertex u ∈ V (H) leaves a disconnected graph that cannot be a tree. Thus
G has only one component, i.e., G is connected.

By hypothesis G has no cut vertices and hence no cut edges (Exercise 14), i.e., every edge of G lies on
a cycle. If G contains more than one cycle, we can choose two cycles C1 and C2 of G and a vertex
u ∈ V (C1) \ V (C2). But then G \ u contains the cycle C2 and hence is not a tree. Therefore, G contains
exactly one cycle.

6. (a) If any two of u, v, w lie in different components of G, then the triangle inequality clearly holds. So
assume that all of these three points lie in the same component of G. Let P be a shortest u, v-path and
Q a shortest v, w-path. The u,w-walk consisting of P followed by Q contains a u,w-path R. Hence
d(u,w) 6 |R| 6 |P1|+ |P2| = d(u, v) + d(v, w).

(b) Let radG = ε(u) and diamG = ε(u′) = d(u′, v′). But then by the triangle inequality diamG 6
d(u′, u) + d(u, v′) 6 ε(u) + ε(u) = 2ε(u) = 2 radG.

(c) If r = d = 1, consider P2. If r = 1 and d = 2, consider P3. So assume that r > 1. Take G to be
the connected graph that decomposes into a cycle C ∼= C2r and a path P ∼= Pd−r+1 such that C and P
share exactly one vertex u which is also an endpoint of P . Let v be the other endpoint of P . (If d = r, then
v = u.) One can readily check that radG = ε(u) = r and diamG = ε(v) = (d− r) + r = d.

7. (a) G = Kn. (Any two vertices of G do not form an independent set.)

(b) The only non-trivial component of G is either a star or a 3-cycle. (Let M := {uv} be a maximal
matching of G. Let n1 (resp. n2) be the number of neighbors of u (resp. v) other than v (resp. u), which are
not neighbors of v (resp. u). Also let n3 be the number of common neighbors of u and v. One can easily
check that if at least two of n1, n2, n3 are non-zero, then M is not maximal. Also if n1 = n2 = 0, we must
have n3 = 1.)

(c) The only non-trivial component of G is a star. (Every edge of G is incident to the vertex in a minimum
vertex cover.)

(d) G is an edge. (Every vertex of G is incident to the edge in a minimum edge cover.)

8. (a) Let G be an X,Y -bigraph.

[if] By hypothesis |N(S)| > |S| for any S ⊆ X; so G has a matching that saturates X , i.e., |Y | > |X|. By
reversing the roles of X and Y one can similarly prove that |X| > |Y |.
[only if] A perfect matching of G saturates both X and Y and hence by Hall’s theorem |N(U)| > |U | for
every U ⊆ X and also |N(V )| > |V | for every V ⊆ Y . Given S ⊆ V (G) one can write S as the disjoint
union U ∪ V , where U = S ∩X and V = S ∩ Y . The neighborhoods of U and V are also disjoint and so
|N(S)| = |N(U)|+ |N(V )| > |U |+ |V | = |S|.

(b) The complete graph K2n+1, n ∈ N, satisfies

|N(S)| =




0 if S = ∅,
2n if |S| = 1,
2n+ 1 if |S| > 2,

that is, |N(S)| > |S| for any S ⊆ V (K2n+1). Since K2n+1 contains an odd number of vertices, it cannot
have a perfect matching.

9. Let S be a maximum independent set in G (so that |S| = α(G)) and let T := V (G) \ S. Since S is
an independent set, the sum

∑
v∈T d(v) counts each edge of G at least once, i.e., e(G) 6 ∑

v∈T d(v) 6
(n(G)− α(G))∆(G). Rearranging gives α(G) 6 n(G)− e(G)/∆(G).

If G is regular, by the degree sum formula we get 2e(G) = n(G)∆(G), i.e., e(G)/∆(G) = n(G)/2, so that
α(G) 6 n(G)− e(G)/∆(G) = n(G)/2.



10. Let M be a maximum matching of G (so that |M | = α′(G)). Let Q be the set of 2α′(G) endpoints of edges
in M (i.e. the set of vertices saturated by M ). Q covers all the edges of G, for, if not, then G has an edge
with unsaturated endpoints u and v. But then adding this edge to M will give a matching bigger than M , a
contradiction.

For every k ∈ N we have α′(kP3) = k and β(kP3) = 2k.

11. The statement is true. The proof follows from the fact that a tree is acyclic and from the following lemma.

Lemma: Let G be a graph with two distinct perfect matchings M and M ′. Then every component of the
symmetric difference M MM ′ is an (even) cycle.

Proof Every component of M MM ′ is either an even cycle or a path, the edges in which alternate between
M \M ′ and M ′ \M . Let u be an endpoint of such a path P . In view of symmetry we can assume that the
edge e of P incident on u belongs to M \M ′. The only edge incident to a vertex of degree 1 must belong
to every perfect matching. Thus dT (u) > 2. Since M ′ saturates u anyway, we can choose a neighbor v of u
not in P such that uv ∈ M ′. Since e ∈ M , uv /∈ M . Thus uv ∈ M ′ \M . This implies that P cannot be a
component of M MM ′. •

12. [if] Define a function f : V (T ) → V (T ) as follows. Choose v ∈ V (T ). By hypothesis T \ v has only one
odd component, call it H . If v has two distinct neighbors u1, u2 in H , then a u1, u2-path in H forms a cycle
with the edges vu1 and vu2. Thus there exists a unique neighbor u of v in H . Define f(v) := u.

First we claim that f is injective. Assume not, i.e., f(v1) = f(v2) = u for some v1 6= v2. Think of T
as a tree rooted at u. Let the children of u be v1, v2, . . . , vk. Call Ti the subtree of T rooted at vi. Since
f(v1) = u, every subtree rooted at a child of v1 is of even order. Therefore, n(T1) is odd. Similarly, n(T2)
is also odd. But then T \ u has at least two odd components (T1 and T2), a contradiction to the hypothesis.

Next we claim that f2 is the identity map on V (T ). Choose v ∈ V (T ). Since V (T ) is finite, the elements
v, f(v), f2(v), f3(v), . . . cannot be all distinct. Choose 0 6 k < l such that f k(v), . . . , f l−1(v) are pairwise
distinct, but fk(v) = f l(v) for some l > k. Since T does not contain loops, l > k + 1. If l > k + 2, then
(fk(v), fk+1(v), . . . , f l−1(v)) is a cycle in T , a contradiction. So l = k + 2, i.e., f k+2(v) = fk(v). Since
f is a map from a finite set to itself, its injectivity implies its bijectivity. Applying the function f−k in the
last equation gives f2(v) = v, as claimed.

Thus f produces the desired pairing of vertices for a perfect matching.

[only if] Let T have a perfect matching. By Tutte’s 1-factor theorem o(T \ v) 6 1. If o(T \ v) = 0, then T
contains an odd number of vertices. No graph with an odd number of vertices can have a perfect matching.

13. Choose (nonempty) S ⊆ V (G) and count the number k of edges from S to the odd components of G\S (as
in the case of a corollary proved in the class). G being 3-regular, counting such edges using their endpoints
in S gives k 6 3|S|.
Let H1, . . . ,Hl be all the odd components of G \ S (where l = o(G \ S)) and let li be the number of edges
between Hi and S. The degree sum formula for Hi and the 3-regularity of G yield 2e(Hi) = 3n(Hi)−mi.
Since n(Hi) is odd, we then have mi. Finally since G has at most two cut-edges mi = 1 for at most two i
and mi > 3 otherwise. Therefore, k > 3o(G \ S)− 4.

Combining the two inequalities involving k yields o(G\S) 6 |S|+4/3. Since o(G\S) and |S| are integers,
the last inequality implies o(G \ S) 6 |S| + 1. Assume that o(G \ S) = |S| + 1. It is a straightforward
check that in this case n(G) is odd. But the degree sum formula for G gives 2e(G) = 3n(G), i.e., n(G) is
even, a contradiction. Thus o(G \ S) 6 |S|. Now apply Tutte’s theorem.

14. P2 (an edge) provides a counterexample to the given statement. The corrected assertion is: Let e be a cut-
edge in G. If the component of G containing e has more than two vertices, then at least one endpoint of G
is a cut vertex.

For the proof of the corrected assertion, let H be the component of G containing e and let u and v be the
endpoints of e. Further let H1 and H2 be the two components of H \ e with u ∈ V (H1) and v ∈ V (H2).
Since n(H) > 3, (at least) one of H1 and H2 has (at least) two vertices. Because of symmetry we can



assume that it is H1. Choose w ∈ V (H1) \ {u}. Every w, v-path uses the edge e. Therefore deleting u
separates w from v.

15. Choose two non-adjacent vertices in the Petersen graph G. These two vertices have the label ab and ac
for some permutation a, b, c, d, e of 1, 2, 3, 4, 5. G contains three pairwise internally disjoint ab, ac-paths:
i) ab, de, ac, ii) ab, cd, be, ac, and iii) ab, ce, bd, ac. By Menger’s theorem G is 3-connected, i.e, κ(G) > 3.
Also κ(G) 6 δ(G) = 3. Thus κ(G) = 3. But then κ′(G) = 3 (since κ(G) 6 κ′(G) 6 δ(G), or since a
3-regular graph H has κ(H) = κ′(H)).

16. Let F = [S, S] and F ′ := [S′, S′] be two different edge cuts ofG. Then SMS ′ is a non-empty proper subset
of V (G). One can readily verify that F M F ′ = [T, T ].

17. The statement is false. A counterexample is provided by the 2-connected
graph shown in the adjacent figure. Consider the u, v-path P shown by
bold edges. The graph contains no u, v-path internally disjoint from P .

u v

18. [if] Clearly G is connected (By hypothesis G satisfies a condition stronger than mere connectivity). Choose
x ∈ V (G). We will show that G \ x is connected. Choose y, z ∈ V (G \ x). By hypothesis there exists an
x, y-path P in G through z. Deletion of x retains the part of P from z to y.

[only if] Suppose that G is 2-connected and choose three pairwise
distinct vertices x, y, z ∈ V (G). By Menger’s theorem G contains
two internally disjoint x, z-paths P1 and P2. Furthermore, G \ x
contains a y, z-path Q. Let w be the vertex on Q, that is nearest to
y and that is also in V (P1) ∪ V (P2). By symmetry let us assume that
w ∈ V (P2). (Note that we can have w = z, in which case w belongs
to V (P1) as well. Also w 6= x.)

P1, the z, w-subpath of P2 and the w, y-subpath of Q give us an x, y-
path through z.

x

y

z

w

P

P

1

2

Q

19. Consider the graph G shown in the adjacent figure.
The vertices v1, . . . , vκ each has pairwise distinct
sets of δ neighbors in Kκδ+1. v1, . . . , vκ−1 has one
neighbor each in Kδ+1, whereas vκ has κ′ − κ + 1
neighbors in Kδ+1. All these neighbors in Kδ+1 are
pairwise distinct.

One can now verify that δ(G) = δ (look at the vertex
in Kδ+1 having no neighbor in {v1, . . . , vκ}).
Consider a pair (x, y) of non-adjacent vertices in this
graph. If x = vi and y = vj for some i 6= j, then
there exist δ > κ internally disjoint vi, vj-paths via
Kκδ+1. If x = u ∈ V (Kκδ+1) and y = vi, we again

Kκδ+1 Kδ+1

v

v

v

v

v

1

2

3

κ−1

κ

e

e

e

e

e

e

1

2

3

κ−1

κ

κ’

δ

δ

δ

δ

δ

get δ > κ internally disjoint u, vi-paths via Kκδ+1. If x = vi and u = w ∈ V (Kδ+1, we get κ internally
disjoint vi, w-paths, one via ei, the others viaKκδ+1, vj and ej for each j 6= i. Finally, if x = u ∈ V (Kκδ+1)
and y = w ∈ V (Kδ+1), then every u,w-path must consist of one of the vertices v1, . . . , vκ. Also we can
arrange exactly κ u,w-paths one through each vi. By Menger’s theorem κ(G) = κ and {v1, . . . , vκ} is a
minimum vertex-cut of G.

A similar study shows that κ′(G) = κ′ and {e1, . . . , eκ′} = [S, S], S = V (Kδ+1), is a minimum edge-cut
of G. (Use the Elias-Feinstein-Shannon-Ford-Fulkerson theorem.)



20. Let B(G) denote the block-cutpoint graph of G. Let B1, . . . , Bs be the blocks of G and v1, . . . , vt the cut
vertices ofG. Let us represent the corresponding vertices inB(G) by b1, . . . , bs and u1, . . . , ut respectively.
If t = 0, then B(G) is the single-vertex tree and has no leaf. So let us concentrate on the case that t > 0, so
that s > 1.

Let B be a block of G. Since G is connected and B does not contain all the vertices of G, there exists
x ∈ V (B) such that x has a neighbor y outside B. The edge xy lies in a separate block B ′ of G. But then
B and B′ share x and so x is a cut vertex of G. Thus every block contains at least one cut vertex.

By definition B(G) is simple. In order to prove that B(G) is connected, it suffices to produce a bi, uj-path
for every i, j. Bi contains a cut vertex of G, say, vk. Since G is connected, there is a vk, vj-path P in G. Let
us follow the path P starting from vk. We simultaneously generate a bi, uj-walk Q. Initially we are at vk in
P and bi in Q. Assume that at some stage we are at x in P and bl in Q. If x is not a cut-vertex of G, we
remain at bl in Q and if P is not yet finished, we proceed to the next vertex on P . If x is a cut-vertex, say
vm, we move from bl to um in Q, and if P is not finished and the next edge on P belongs to Bn, we move
from um to bn and proceed to the next vertex on P . The resulting bi, uj-walk Q contains a bi, uj-path.

Now suppose that (bi1 , ui1 , . . . , bir , uir) is a cycle in B(G). Since B(G) is simple, r > 3. I will show that
B :=

⋃r
k=1 Bik is 2-connected, contradicting the maximality of each block Bik . Choose x ∈ V (B) and

y, z ∈ V (B) \ {x}. By symmetry we can assume that x ∈ V (Bi1). Since Bi1 is a block and has more than
one vertex (G contains no isolated vertex), Bi1 \ x is connected. Choose w ∈ V (Bi1) \ x. Then there is a
y, w-path P1 and a w, z-path P2 in B \ x. P1 and P2 produce a y, z-walk which contains a y, z-path. (See
the following figure explaining two possibilities for x. P1 (resp. P2) may lie entirely in Bi1 , if y (resp. z) is
in V (Bi1) \ {x}. If both y and z are in V (Bi1) \ {x}, then one directly gets an y, z-path in the connected
graph Bi1 \ x.)

x

y

z

w
x

z

y

P
P P

P1

1
2

2

w

Thus B(G) is a tree. What remains is to show that a cut vertex of G must belong to at least two blocks of
G. Assume the contrary, that is, a cut vertex x belongs to only one block B of G. If x has a neighbor y
outside B, then the edge xy belongs to a different block B ′ so that x belongs to B′ as well. So x does not
have a neighbor outside B. Now choose any y, z ∈ V (G \ x). Since G is connected, there is a y, z-path P
in G. If P does not involve B, it remains in G \ {x}. Otherwise let y ′ and z′ be the first and last vertices of
P which are in V (B). (We might have y′ = y and/or z′ = z.) Since B is 2-connected, there is a y′, z′-path
Q in B \ x. The y, y′-subpath of P , Q and the z′, z-subpath of P give a y, z-path in G \ {x}. Thus G \ {x}
is connected, i.e., x is not a cut vertex of G, a contradiction.

21. We start by proving that for any plane graph H the dual H∗ is connected. For the proof let Xu be the
unbounded face ofH andX any other face ofH . If we draw a (semi-infinite) ray from the point x ∈ V (H ∗)
representing X , the ray will eventually go the interior of Xu (because all faces of H other than Xu are
bounded). From a point on the ray in the interior of Xu there is a polygonal curve ending in xu (the vertex
representingXu) and lying entirely insideXu. We can distort the ray, if necessary, to get a simple polygonal
curve C starting from x and ending in xu such that C does not go through any vertex of H . C crosses a
finite number of edges of H (at their internal points). Every time it does so, it may or may not move from
one face of H to another. In any case, C traverses a finite sequence of faces of H , in which two consecutive
faces share an edge. This gives us an x, xu-path in H∗. But then for any x, x′ ∈ V (H∗) an x, xu- and an
x′, xu-path yield an x, x′-walk and hence an x, x′-path in H∗. Thus H∗ is connected, as claimed.

First assume that G is disconnected. Taking H = G∗ in the last paragraph shows that H∗ = (G∗)∗ is
connected and hence cannot be the same as G.

For the converse, let G be connected. Let us draw G∗ in such a way that each edge of G∗ crosses only the
corresponding edge of G (only once) and no other edge of G or G∗. Now let X∗ be a face of G∗. Any edge



e∗ ∈ E(G∗) on the boundary ofX∗ has a crossing with the corresponding edge e ∈ E(G). But then e enters
the face X∗ and must terminate before leaving X∗. That is, X∗ contains at least one vertex of G. Assume
that some face of G∗ contains more than one vertex of G, i.e., n > f ∗. But f = n∗ and e = e∗. Since G∗

is connected, Euler’s formula gives n∗ − e∗ + f∗ = 2. Combining all these findings gives n − e + f > 2,
i.e., G is not connected, a contradiction. Thus every face of G∗ contains exactly one vertex of G. But then
we can use each e as (e∗)∗ and obtain G as the dual of (G∗)∗.

22. It is sufficient to prove the assertion for a connected graph, since otherwise we could add an appropriate
number of edges and prove the assertion for the resulting connected outerplane graph. The length of the
outer face of G is n, whereas the length of every other face is at least 3 (since G is simple). Therefore,
the degree sum formula for G∗ gives 2e = 2e∗ > n + 3(f − 1). Since G is plane also, n − e + f = 2.
Eliminating f gives e 6 2n− 3.

23. Consider the following two cases:

Case 1: G is not planar.

ThenG is clearly non-outerplanar too. AlsoG contains a subdivision ofK5 orK3,3 and hence a subdivision
of K4 or K2,3.

Case 2: G is planar.

Consider the graph H obtained by adding a new vertex to G and joining this new vertex to every vertex in
G. It follows that G is outerplanar ⇐⇒ H is planar ⇐⇒ H contains no subdivision of K5 or K3,3 ⇐⇒
G contains no subdivision of K4 or K2,3. This is exemplified in the following figure:

G

G is not outerplanar

is outerplanar

24. (a) It is sufficient to prove the assertion for connected graphs. By Euler’s formula n− e+ f = 2. Since G
has girth k, every face of G has length at least k, i.e., 2e > kf . Eliminating f gives e 6 (n− 2) k

k−2 .

(b) The Petersen graph has girth 5. By Part (a) every simple planar graph with 10 vertices and of girth 5
contains at most 8× 5/3 = 13.333 . . . , i.e., at most 13 edges. But the Petersen graph has 15 edges.

25. (a) Let G ∼= G∗. Since G∗ is connected (Exercise 21),
G is also connected. By Euler’s formula n − e + f = 2.
But the isomorphism G ∼= G∗ implies n = n∗ = f , i.e.,
n− e+ n− 2, i.e., e = 2n− 2.

(b) Let G be the cycle Cn−1 plus another vertex joined to
each vertex of Cn−1. Then G ∼= G∗. The adjacent figure
explains the construction for n = 7.


