1. Prove or disprove: The complement of a simple disconnected graph must be connected.

Solution The statement is true. Let G be a simple disconnected graph and $u, v \in V(G)$. If u and v belong to different components of G, then the edge $uv \in E(G)$. If u and v belong to the same component of G, choose a vertex w in another component of G. (G has at least two components, since it is disconnected.) But then the edges uw and wv belong to $E(G)$. That is, in all cases there is a u, v-path in G.

2. Prove that a bipartite graph has a unique bipartition (apart from interchanging the partite sets) if and only if it is connected.

Solution [if] Let G be a bipartite graph and choose $v \in V(G)$. Let X, Y and X', Y' be two different bipartitions of G with $v \in X$ and $v \in X'$. Since $X \neq X'$, at least one of $X \setminus X'$ and $X' \setminus X$ is non-empty. Also $Y \neq X'$, so both $Y \setminus X'$ and $X' \setminus Y$ can not be empty. Finally X, X', Y and Y' are independent sets. It follows that G is the disjoint union of two bipartite graphs, one with bipartition $X \setminus X', X' \setminus X$ and the other with bipartition $Y \setminus X', X' \setminus Y$. So G is not connected.

[only if] Let G be a disconnected bipartite graph, H a component of G and H' the disjoint union of all other components of G. H and H' are again bipartite, say, with bipartitions X, Y and X', Y' respectively. Then $X \cup X', Y \cup Y'$ and $X \cup Y', Y \cup X'$ are two different bipartitions of G.

3. Prove or disprove: Every Eulerian bipartite graph contains an even number of edges.

Solution The statement is true. For the proof let G be an Eulerian bipartite graph with bipartition X, Y of its non-trivial component. We can count the number of edges in G as $e(G) = \sum_{v \in X} d(v)$. Since G is Eulerian, each degree $d(v)$ in this sum is even.

4. Which of the following is a graphic sequence: $(5, 5, 5, 4, 2, 1, 1, 1)$ and $(5, 5, 4, 4, 2, 1, 1, 1)$? If it is graphic, produce a realization of the sequence, else prove why it is not graphic.

Solution $(5, 5, 5, 4, 2, 1, 1, 1)$ is graphic \iff $(4, 4, 3, 1, 0, 1, 1)$, i.e., $(4, 4, 3, 1, 1, 1, 0)$ is graphic \iff $(3, 2, 0, 0, 1, 0)$, i.e., $(3, 2, 1, 0, 0, 0)$ is graphic. The last sequence is not graphic, since a vertex of degree 3 in a simple graph must have three neighbors each of positive degree.

$(5, 5, 4, 4, 2, 1, 1, 1)$ is graphic \iff $(4, 3, 3, 1, 1, 1, 1)$ is graphic \iff $(2, 2, 0, 0, 1, 1)$, i.e., $(2, 2, 1, 1, 0, 0)$ is graphic \iff $(1, 0, 1, 0, 0)$, i.e., $(1, 1, 0, 0, 0)$ is graphic \iff $(0, 0, 0, 0)$ is graphic. But four isolated vertices realize $(0, 0, 0, 0)$ and so $(5, 5, 4, 4, 2, 1, 1, 1)$ is graphic. Starting from four isolated vertices one can work back and come up with the realization shown in the adjacent figure.

5. Let n be a positive integer of the form $4k$ or $4k + 1$ for some $k \in \mathbb{N}$. Construct a simple graph G with n vertices, $n(n - 1)/4$ edges and with $\Delta(G) - \delta(G) \leq 1$.

Solution $[n = 4k]$ Let H be the complete bipartite graph with bipartition $\{u_1, \ldots, u_{2k}\}, \{v_1, \ldots, v_{2k}\}$. Take $G := H \setminus \{u_iv_i \mid i = 1, \ldots, k\}$.

$[n = 4k + 1]$ Start with the graph G constructed for the case $n = 4k$. Add to G a new vertex w and the edges wu_i and wv_i for each $i = 1, \ldots, k$. The resulting graph is $2k$-regular.

6. Prove that every set of six people contains (at least) three mutual acquaintances or three mutual strangers.

Solution Consider the acquaintance graph G of a given set of six people with vertex set $\{v_1, \ldots, v_6\}$. We have to show that either G or \overline{G} has a triangle. Since K_6 decomposes into G and \overline{G}, v_1 has a total of five
Let \(v \) be a cut-vertex of a simple graph \(G \). Prove that \(\overline{G} \setminus v \) is connected.

Solution First note that \(\overline{G} \setminus v \) is the same as \(G \setminus v \). Now use Exercise 1.

11. Let \(G_n \) be the simple graph with each vertex labeled by a permutation of \(\{1, 2, \ldots, n\} \) and with two vertices adjacent if and only if their labels differ by an interchange of two adjacent entries. Prove that \(G_n \) is connected.

Solution Let \((i_1, i_2, \ldots, i_n) \) and \((j_1, j_2, \ldots, j_n) \) be two permutations of \(\{1, 2, \ldots, n\} \). By a sequence of interchanges of adjacent entries one can convert \((i_1, i_2, \ldots, i_n) \) to \((1, 2, \ldots, n) \) — as in the bubble-sort algorithm. (This fact can be easily proved by induction on \(n \).) Similarly a sequence of interchanges of adjacent entries produces \((1, 2, \ldots, n) \) from \((j_1, j_2, \ldots, j_n) \). If one reverses this second sequence of interchanges, one gets back \((j_1, j_2, \ldots, j_n) \) from \((1, 2, \ldots, n) \).

12. Let \(G \) be a connected simple graph not containing \(P_4 \) or \(C_3 \) as an induced subgraph. Prove that \(G \) is a biclique (i.e., a complete bipartite graph).

Solution We first prove by induction on \(k \in \mathbb{N} \) that \(G \) contains no cycles of length \(2k + 1 \). Since \(G \) does not contain \(C_3 \) as (induced) subgraph, \(G \) does not contain 3-cycles. So consider \(k \geq 2 \) and suppose that \(G \) does not contain cycles of length \(3, 5, \ldots, 2k - 1 \). Assume that \(G \) contains a \(2k + 1 \)-cycle \(Z \). If \(G \) contains an edge \(e \) between non-adjacent vertices of \(Z \), then \(G \) contains two smaller cycles \(Z_1 \) and \(Z_2 \). We choose \(e \) in such a way that the length of \(Z_1 \) is minimum. Now by the induction hypothesis neither \(Z_1 \) nor \(Z_2 \) is odd,
13. Let P and Q be paths of maximum length in a connected graph G. Prove that $V(P) \cap V(Q) = \emptyset$.

\textit{Solution} Assume that $V(P) \cap V(Q) = \emptyset$. Let the endpoints of P be u and v and those of Q be x and y. Since G is connected, there is a u, x-path R in G. Since P and Q do not share a vertex, there is a portion S of R such that S is a p, q-path with $p \in V(P)$ and $q \in V(Q)$ and such that S does not contain any other vertex of P or Q. Let $l := |P| = |Q|$. Either the u, p- or the p, v-subpath of P is of length $\geq l/2$. Because of symmetry we may assume that the former path, call it P', is not shorter than the latter. Similarly assume that the x, q-subpath Q' of Q is not shorter than the q, y-subpath of Q. That is, $|P'| \geq l/2$ and $|Q'| \geq l/2$. Now P' followed by S followed by Q' is a u, x-path of length $\geq (l/2) + 1 + (l/2) > l$, a contradiction to the maximality of $|P| = |Q|$.

14. Prove that an even graph has no cut edge. For each $k \in \mathbb{N}$ produce a $2k + 1$-regular simple graph with a cut edge.

\textit{Solution} Let G be an even graph and let $e \in E(G)$ have endpoints u and v. Deleting e from G makes the degrees of u and v odd and leaves the degrees of other vertices unchanged (namely even). If u and v belong to different components in $G \setminus e$, then the component of $G \setminus e$ containing u would have exactly one odd vertex, a contradiction. So u and v are connected in $G \setminus e$. A u, v-path in $G \setminus e$ forms a cycle in conjunction with e, i.e., e lies on a cycle in G. Thus e is not a cut-edge.

The adjacent graph is $2k + 1$-regular and simple with cut edge wx.

15. Deduce that the total number of simple even graphs on a given set of n vertices is $2^{\binom{n-1}{2}}$.

\textit{Solution} Let S be the set of all even simple graphs on the vertex set $\{v_1, \ldots, v_n\}$. Also let T be the set of all simple graphs on the vertex set $\{v_1, \ldots, v_{n-1}\}$. I will establish a bijection between S and T. Consider the map $f : S \rightarrow T$ defined by $G \mapsto G \setminus v_n$. For the converse consider $g : T \rightarrow S$ defined as follows. Take a graph $H \in T$ and let U denote the set of all odd vertices in H. Add to H the vertex v_n and an edge $v_i v_n$ for every $v_i \in U$. Since $|U|$ is even, the resulting graph $(\in S)$ is even and is defined to be $g(H)$. It’s easy to argue that $g \circ f = \text{id}_S$ and $f \circ g = \text{id}_T$, i.e., f is a bijection.

16. Argue that the Petersen graph has exactly 12 five-cycles.

\textit{Solution} Call the Petersen graph G. First I claim that every edge l in G belongs to exactly four five-cycles. For the proof let the endpoints of l be ab and cd for some $\{a, b, c, d\} \subset \{1, 2, 3, 4, 5\}$. (Since ab and
Let \(n \) be the number of 5-cycles in \(G \). Summing up the edges in all these cycles gives a total of \(5n \) edges. In this sum each edge of \(G \) is counted four times in view of the previous claim. Since \(G \) has 15 edges, we have \(5n = 4 \times 15 = 60 \), i.e., \(n = 12 \).

17. Let \(G \) be an \(n \)-vertex simple graph with \(n \geq 2 \). Determine the maximum possible number of edges in \(G \) under each of the following conditions:

i) \(G \) has an independent set of size \(k \).

ii) \(G \) has exactly \(k \) components.

iii) \(G \) is disconnected.

Solution

i) \(\binom{n}{2} - \binom{k}{2} \). Achieved by the graph obtained by deleting from \(K_n \) all edges with both endpoints in a chosen \(k \)-element subset of \(V(K_n) \).

ii) \((\binom{n-k+1}{2}) \). Let \(H_1, \ldots, H_k \) be the \(k \) components of \(G \) with \(n_i := n(H_i) \) for \(i = 1, \ldots, k \). We may assume (after rearranging, if necessary) that \(n_1 \geq n_2 \geq \cdots \geq n_k \geq 1 \). Then \(e(G) = e(H_1) + e(H_2) + \cdots + e(H_k) \leq \binom{n_1}{2} + \binom{n_2}{2} + \cdots + \binom{n_k}{2} = (n_1^2 + n_2^2 + \cdots + n_k^2 - n)/2 \). This number of edges corresponds to that of a disjoint union of \(k \) complete graphs \((K_{n_1} + K_{n_2} + \cdots + K_{n_k}) \). Now for \(n_i \geq 1 \) we have \(e(K_{n_1+1} + K_{n_2+1} + \cdots + K_{n_k+1}) - e(K_{n_1} + K_{n_2} + \cdots + K_{n_k}) = (n_1 - n_i) + 1 \geq 1 \), i.e., we gain at least an edge by pushing a vertex from the \(i \)-th component to the first one. Thus if \(n_2 = \cdots = n_k = 1 \) (so that \(n_1 = n - k + 1 \)), we have the maximum value of \(e(G) \), i.e., \(e(G) \leq \binom{n-k+1}{2} \). This bound is achieved by \(K_{n-k+1} + K_1 + \cdots + K_1 \).

iii) \(\binom{n}{2} - \binom{k}{2} \). A disconnected graph \(G \) has \(k \geq 2 \) components and hence by Part ii) can have a maximum of \(\binom{n-k+1}{2} \) edges. This number is maximized for \(k = 2 \), which implies that \(n(G) \leq \binom{n}{2} \). This bound is achieved by \(K_{n-1} + K_1 \).

18. Show that every simple graph with at least two vertices contains at least two vertices of the same degree. Does the result continue to hold if `simple' is replaced by `loopless'?

Solution Let \(n \geq 2 \) and \(G \) a simple graph with \(n \) vertices. Since the vertex degrees can assume only \(n \) possible values \(0, 1, \ldots, n - 1 \), the \(n \) vertices of \(G \) have pairwise distinct degrees if and only if \(G \) has a vertex \(v_i \) of degree \(i \) for each \(i = 0, \ldots, n - 1 \). But then \(v_{n-1} \) is adjacent to every other vertex in \(V(G) \) and in particular to \(v_0 \), a contradiction.

The result does not necessarily hold for loopless graphs. For example consider the adjacent 3-vertex loopless graph with the degree sequence \((3, 2, 1) \).

19. Let \(n, s, t \) be non-negative integers with \(n = s + t > 0 \). Find necessary and sufficient conditions on \(n, s, t \) such that there exists a connected simple \(n \)-vertex graph with \(s \) vertices of odd degree and \(t \) vertices of even degree.

Solution The necessary and sufficient condition sought for is that \(s \) be even. The necessity is an immediate consequence of the degree-sum formula. For the converse let us be given an even \(s \) and any \(t \). If \(s = 0 \), then consider the cycle \(C_t \). If \(t = 0 \), consider the complete graph \(K_s \). Finally suppose that \(s > 0 \) and \(t > 0 \) and start with the complete biclique \(K_s,t \). If \(t \) is odd, \(K_s,t \) is a desired graph. Otherwise let \(X = \{u_1, \ldots, u_s\}, Y = \{v_1, \ldots, v_t\} \) be the bipartition of the vertices of \(K_s,t \) and add to \(K_s,t \) the edges \(u_1u_2, u_3u_4, \ldots, u_{s-1}u_s \).

20. Show that for every \(k \in \mathbb{N} \) the sequence \((1, 1, 2, 2, \ldots, k, k) \) is graphic.

Solution We proceed by induction on \(k \). For \(k = 1 \) use \(P_2 \) that realizes \((1, 1) \). So suppose that \(k \geq 1 \) and that \((1, 1, 2, 2, \ldots, k, k) \) is graphic. I will show that \((1, 1, 2, \ldots, k, k, k+1, k+1) \) is also graphic. Let \(G \) be a realization of \((1, 1, 2, 2, \ldots, k, k) \) with vertices \(u_i \) and \(v_i \) having degree \(i \) for each \(i = 1, \ldots, k \). Add to \(G \) two new vertices \(w \) and \(w' \) and the edges \(wu_i \) and \(w'u_i \) for all \(i = 1, \ldots, k \). In the resulting graph \(w' \) and \(v_i \) have degree 1, \(u_1 \) and \(v_2 \) have degree 2, \(u_2 \) and \(v_3 \) have degree 3, \(u_{k-1} \) and \(v_k \) have degree \(k \), and \(u_k \) and \(w \) have degree \(k+1 \).