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Exercise set 1 (Fundamental concepts)

1. Prove or disprove: The complement of a simple disconnected graph must be connected.

Solution The statement is true. Let G be a simple disconnected graph and u, v ∈ V (G). If u and v belong
to different components of G, then the edge uv ∈ E(Ḡ). If u and v belong to the same component of G,
choose a vertex w in another component of G. (G has at least two components, since it is disconnected.)
But then the edges uw and wv belong to E(Ḡ). That is, in all cases there is a u, v-path in Ḡ. •

2. Prove that a bipartite graph has a unique bipartition (apart from interchanging the partite sets) if and only if it is
connected.

Solution [if] Let G be a bipartite graph and choose v ∈ V (G). Let X,Y and X ′, Y ′ be two different
bipartitions of G with v ∈ X and v ∈ X ′. Since X 6= X ′, at least one of X \X ′ and X ′ \X is non-empty.
Also Y 6= X ′, so both Y \X ′ and X ′ \ Y can not be empty. Finally X , X ′, Y and Y ′ are independent sets.
It follows that G is the disjoint union of two bipartite graphs, one with bipartition X \X ′, X ′ \X and the
other with bipartition Y \X ′, X ′ \ Y . So G is not connected.

[only if] Let G be a disconnected bipartite graph, H a component of G and H ′ the disjoint union of all other
components of G. H and H ′ are again bipartite, say, with bipartitions X,Y and X ′, Y ′ respectively. Then
X ∪X ′, Y ∪ Y ′ and X ∪ Y ′, Y ∪X ′ are two different bipartitions of G. •

3. Prove or disprove: Every Eulerian bipartite graph contains an even number of edges.

Solution The statement is true. For the proof let G be an Eulerian bipartite graph with bipartition X,Y
of its non-trivial component. We can count the number of edges in G as e(G) =

∑
v∈X d(v). Since G is

Eulerian, each degree d(v) in this sum is even. •

4. Which of the following is a graphic sequence: (5, 5, 5, 4, 2, 1, 1, 1) and (5, 5, 4, 4, 2, 2, 1, 1)? If it is graphic, produce
a realization of the sequence, else prove why it is not graphic.

Solution (5, 5, 5, 4, 2, 1, 1, 1) is graphic ⇐⇒ (4, 4, 3, 1, 0, 1, 1), i.e.,
(4, 4, 3, 1, 1, 1, 0) is graphic ⇐⇒ (3, 2, 0, 0, 1, 0), i.e., (3, 2, 1, 0, 0, 0) is
graphic. The last sequence is not graphic, since a vertex of degree 3 in a
simple graph must have three neighbors each of positive degree.

(5, 5, 4, 4, 2, 2, 1, 1) is graphic ⇐⇒ (4, 3, 3, 1, 1, 1, 1) is graphic ⇐⇒
(2, 2, 0, 0, 1, 1), i.e., (2, 2, 1, 1, 0, 0) is graphic ⇐⇒ (1, 0, 1, 0, 0), i.e.,
(1, 1, 0, 0, 0) is graphic ⇐⇒ (0, 0, 0, 0) is graphic. But four isolated vertices
realize (0, 0, 0, 0) and so (5, 5, 4, 4, 2, 2, 1, 1) is graphic. Starting from four
isolated vertices one can work back and come up with the realization shown
in the adjacent figure.
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5. Let n be a positive integer of the form 4k or 4k + 1 for some k ∈ N. Construct a simple graph G with n vertices,
n(n− 1)/4 edges and with ∆(G)− δ(G) 6 1.

Solution [n = 4k] Let H be the complete bipartite graph with bipartition {u1, . . . , u2k}, {v1, . . . , v2k}.
Take G := H \ {uivi | i = 1, . . . , k}.
[n = 4k + 1] Start with the graph G constructed for the case n = 4k. Add to G a new vertex w and the
edges wui and wvi for each i = 1, . . . , k. The resulting graph is 2k-regular. •

6. Prove that every set of six people contains (at least) three mutual acquaintances or three mutual strangers.

Solution Consider the acquaintance graph G of a given set of six people with vertex set {v1, . . . , v6}. We
have to show that either G or Ḡ has a triangle. Since K6 decomposes into G and Ḡ, v1 has a total of five



incident edges in G and Ḡ, i.e., v1 has > 3 incident edges either in G or in Ḡ. Without loss of generality
assume that v1 is joined to v2, v3, v4 in G. If there is an edge vivj ∈ E(G) with 2 6 i < j 6 4, then G
contains the triangle with vertices v1, vi, vj . On the other hand if no vivj , 2 6 i < j 6 4, belongs to G, they
all belong to Ḡ and form a triangle in Ḡ. •

7. Prove that a k-regular graph of girth 4 has at least 2k vertices.

Solution Let G be a k-regular graph of girth 4. Then G is simple (since loops and multiple edges produce
1-cycles and 2-cycles respectively). Choose any u ∈ V (G) and let N(u) = {v1, . . . , vk}. Since G has girth
4, any two vi and vj (1 6 i < j 6 k) are non-adjacent. Thus v1 has k − 1 neighbors w1, . . . , wk−1 not in
the set {u, v1, . . . , vk}. Thus we have already got 1 + k + (k − 1) = 2k distinct vertices of G.
(Remark: If we also add the edges viwj for all i = 2, . . . , k and j = 1, . . . , k − 1, we get a k-regular
graph of girth 4 and with exactly 2k vertices. This is in fact the complete bipartite graph with bipartition
{u,w1, . . . , wk−1}, {v1, . . . , vk}.) •

8. Prove that there exists a self-complementary graph with n vertices, if and only if n or n− 1 is divisible by 4.

Solution [n = 4t] Let X1, . . . , X4 be four pairwise disjoint sets each of cardinality t. Construct a graph G
with V (G) =

⋃4
i=1Xi. E(G) consists of the edges in the two complete graphs with vertex sets X1 and X4

respectively and the edges in the three bicliques (complete bigraphs) with bipartitions (X1, X2), (X2, X3)
and (X3, X4) respectively. Then Ḡ has the edge set comprising the edges in the two complete graphs with
vertex setsX2 andX3 respectively and the edges in the three bicliques with bipartitions (X2, X4), (X4, X1)
and (X1, X3) respectively. It is (almost) immediate that G ∼= Ḡ.

[n = 4t+ 1] Construct the graph G on 4t vertices as described above. Add a new vertex v /∈ V (G) and the
edges between v and every member of X1 ∪X4. The resulting graph G′ is again self-complementary.

[n = 4t+ 2 or n = 4t+ 3] The total number of edges in Kn is odd in this case. So Kn can not decompose
into a graph G and its complement Ḡ with G ∼= Ḡ. •

9. Argue that the Petersen graph has exactly 120 automorphisms.

Solution Let f be an automorphism of the Petersen graph G. Since f preserves adjacency, it maps
the 5-cycle (12, 34, 51, 23, 45) to a 5-cycle of G. With little care one can show that under the rules of
adjacency in G every 5-cycle of G is of the form (ab, cd, ea, bc, de), where (a, b, c, d, e) is a permutation σ
of (1, 2, 3, 4, 5). Then it is an easy matter to check that every vertex ij of G is mapped by f to σ(i)σ(j),
i.e., f is determined by σ. Conversely each such permutation σ defines an automorphism of G. •

10. Let v be a cut-vertex of a simple graph G. Prove that Ḡ \ v is connected.

Solution First note that Ḡ \ v is the same as G \ v. Now use Exercise 1. •

11. Let Gn be the simple graph with each vertex labeled by a permutation of {1, 2, . . . , n} and with two vertices adjacent
if and only if their labels differ by an interchange of two adjacent entries. Prove that Gn is connected.

Solution Let (i1, i2, . . . , in) and (j1, j2, . . . , jn) be two permutations of {1, 2, . . . , n}. By a sequence
of interchanges of adjacent entries one can convert (i1, i2, . . . , in) to (1, 2, . . . , n) — as in the bubble-
sort algorithm. (This fact can be easily proved by induction on n.) Similarly a sequence of interchanges
of adjacent entries produces (1, 2, . . . , n) from (j1, j2, . . . , jn). If one reverses this second sequence of
interchanges, one gets back (j1, j2, . . . , jn) from (1, 2, . . . , n). •

12. Let G be a connected simple graph not containing P4 or C3 as an induced subgraph. Prove that G is a biclique (i.e., a
complete bipartite graph).

Solution We first prove by induction on k ∈ N that G contains no cycles of length 2k + 1. Since G does
not contain C3 as (induced) subgraph, G does not contain 3-cycles. So consider k > 2 and suppose that G
does not contain cycles of length 3, 5, . . . , 2k − 1. Assume that G contains a 2k + 1-cycle Z. If G contains
an edge e between non-adjacent vertices of Z, then G contains two smaller cycles Z1 and Z2. We choose e
in such a way that the length of Z1 is minimum. Now by the induction hypothesis neither Z1 nor Z2 is odd,



i.e., they are both even and hence are of length > 4. Also the minimality of Z1 implies that Z1 is an induced
subgraph of G. But then Z1 (and hence G) contain P4 as an induced subgraph, a contradiction.

Thus G contains no odd cycles, i.e., G is bipartite. Let X,Y be a bipartition of G. If |X| = 1 or |Y | = 1,
the connectedness of G implies that G is complete. So consider |X| > 1 and |Y | > 1. Suppose that G
is not complete, i.e., for some x ∈ X and y ∈ Y the edge xy /∈ E(G). Since G is connected, there is an
x, y-path in G. Let P be a minimal x, y-path. Since x and y lie in different partite sets, the length of P is
odd. Moreover, since xy /∈ E(G), the length of P is at least 3. Let x, y ′, x′, y′′ be the first four vertices on
P (where y′ 6= y, but one might have y′′ = y). Since P is minimal, xy′′ /∈ E(G). Also x and x′ belong
to the same partite set and hence xx′ /∈ E(G). Similarly y′y′′ /∈ E(G). It follows that the subgraph of G
induced by {x, y, x′, y′′} is (isomorphic to) the path P4, a contradiction. •

13. Let P and Q be paths of maximum length in a connected graph G. Prove that V (P ) ∩ V (Q) 6= ∅.

Solution Assume that V (P ) ∩ V (Q) = ∅. Let the endpoints of P be u and v and those of Q be x and y.
Since G is connected, there is a u, x-path R in G. Since P and Q do not share a vertex, there is a portion
S of R such that S is a p, q path with p ∈ V (P ) and q ∈ V (Q) and such that S does not contain any other
vertex of P or Q. Let l := |P | = |Q|. Either the u, p- or the p, v-subpath of P is of length > l/2. Because
of symmetry we may assume that the former path, call it P ′, is not shorter than the latter. Similarly assume
that the x, q-subpath Q′ of Q is not shorter than the q, y-subpath of Q. That is, |P ′| > l/2 and |Q′| > l/2.
Now P ′ followed by S followed by Q′ is a u, x-path of length > (l/2) + 1 + (l/2) > l, a contradiction to
the maximality of |P | = |Q|. •

14. Prove that an even graph has no cut edge. For each k ∈ N produce a 2k + 1-regular simple graph with a cut edge.

Solution Let G be an even graph and let e ∈ E(G) have endpoints u and v. Deleting e from G makes the
degrees of u and v odd and leaves the degrees of other vertices unchanged (namely even). If u and v belong
to different components in G \ e, then the component of G \ e containing u would have exactly one odd
vertex, a contradiction. So u and v are connected in G \ e. A u, v-path in G \ e forms a cycle in conjunction
with e, i.e., e lies on a cycle in G. Thus e is not a cut-edge.

The adjacent graph is 2k + 1-
regular and simple with cut
edge wx.
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15. Deduce that the total number of simple even graphs on a given set of n vertices is 2(n−1
2 ).

Solution Let S be the set of all even simple graphs on the vertex set {v1, . . . , vn}. Also let T be the set of
all simple graphs on the vertex set {v1, . . . , vn−1}. I will establish a bijection between S and T . Consider
the map f : S → T defined by G 7→ G \ vn. For the converse consider g : T → S defined as follows. Take
a graph H ∈ T and let U denote the set of all odd vertices in H . Add to H the vertex vn and an edge vivn
for every vi ∈ U . Since |U | is even, the resulting graph (∈ S) is even and is defined to be g(H). It’s easy to
argue that g ◦ f = idS and f ◦ g = idT , i.e., f is a bijection. •

16. Argue that the Petersen graph has exactly 12 five-cycles.

Solution Call the Petersen graph G. First I claim that every edge l in G belongs to exactly four five cycles.
For the proof let the endpoints of l be ab and cd for some {a, b, c, d} ⊆ {1, 2, 3, 4, 5}. (Since ab and



cd are adjacent, we have {a, b} ∩ {c, d} = ∅.) The vertex ab has three neighbors cd, ce and de, where
{a, b, c, d, e} = {1, 2, 3, 4, 5}. Similarly the three neighbors of cd are ab, ae and be. Therefore, every cycle
of length > 4 containing the edge l must also contain one of the four paths having vertices xe, ab, cd, ye (in
that order) for x ∈ {c, d} and y ∈ {a, b}. For each such x and y the vertices xe and ye are non-adjacent and
hence share a unique common neighbor, call it v = v(x, y). Then (v, xe, ab, cd, ye) is a 5-cycle for each
x, y. This proves the claim.

Let n be the number of 5-cycles in G. Summing up the edges in all these cycles gives a total of 5n edges.
In this sum each edge of G is counted four times in view of the previous claim. Since G has 15 edges, we
have 5n = 4× 15 = 60, i.e., n = 12. •

17. Let G be an n-vertex simple graph with n > 2. Determine the maximum possible number of edges in G under each
of the following conditions:
i) G has an independent set of size k.
ii) G has exactly k components.
iii) G is disconnected.

Solution i)
(n

2

)− (k2
)
. Achieved by the graph obtained by deleting from Kn all edges with both endpoints

in a chosen k-element subset of V (Kn).

ii)
(n−k+1

2

)
. Let H1, . . . ,Hk be the k components of G with ni := n(Hi) for i = 1, . . . , k. We may assume

(after rearranging, if necessary) that n1 > n2 > · · · > nk > 1. Then e(G) = e(H1)+e(H2)+· · ·+e(Hk) 6(n1

2

)
+
(n2

2

)
+ · · · +

(nk
2

)
= (n2

1 + n2
2 + · · · + n2

k − n)/2. This number of edges corresponds to
that of a disjoint union of k complete graphs (Kn1 + Kn2 + · · · + Knk ). Now for ni > 1 we have
e(Kn1+1+Kn2 +· · ·+Kni−1 +Kni−1+Kni+1 +· · ·+Knk)−e(Kn1 +Kn2 +· · ·+Knk) = (n1−ni)+1 > 1,
i.e., we gain at least an edge by pushing a vertex from the i-th component to the first one. Thus if
n2 = · · · = nk = 1 (so that n1 = n− k + 1), we have the maximum value of e(G), i.e., e(G) 6

(n−k+1
2

)
.

This bound is achieved by Kn−k+1 +K1 + · · ·+K1.

iii)
(n−1

2

)
. A disconnected graph G has k > 2 components and hence by Part ii) can have a maximum of(n−k+1

2

)
edges. This number is maximized for k = 2, which implies that n(G) 6

(n−1
2

)
. This bound is

achieved by Kn−1 +K1. •

18. Show that every simple graph with at least two vertices contains at least two vertices of the same degree. Does the
result continue to hold if ‘simple’ is replaced by ‘loopless’?

Solution Let n > 2 and G a simple graph with n vertices. Since the vertex degrees can assume only n
possible values 0, 1, . . . , n − 1, the n vertices of G have pairwise distinct degrees if and only if G has a
vertex vi of degree i for each i = 0, . . . , n− 1. But then vn−1 is adjacent to every other vertex in V (G) and
in particular to v0, a contradiction.

The result does not necessarily hold for loopless graphs. For example consider
the adjacent 3-vertex loopless graph with the degree sequence (3, 2, 1). •

19. Let n, s, t be non-negative integers with n = s + t > 0. Find necessary and sufficient conditions on n, s, t such that
there exists a connected simple n-vertex graph with s vertices of odd degree and t vertices of even degree.

Solution The necessary and sufficient condition sought for is that s be even. The necessity is an immediate
consequence of the degree-sum formula. For the converse let us be given an even s and any t. If s = 0,
then consider the cycle Ct. If t = 0, consider the complete graph Ks. Finally suppose that s > 0
and t > 0 and start with the complete biclique Ks,t. If t is odd, Ks,t is a desired graph. Otherwise let
X = {u1, . . . , us}, Y = {v1, . . . , vt} be the bipartition of the vertices of Ks,t and add to Ks,t the edges
u1u2, u3u4, . . . , us−1us. •

20. Show that for every k ∈ N the sequence (1, 1, 2, 2, . . . , k, k) is graphic.

Solution We proceed by induction on k. For k = 1 consider P2 that realizes (1, 1). So suppose that k > 1
and that (1, 1, 2, 2, . . . , k, k) is graphic. I will show that (1, 1, 2, 2, . . . , k, k, k + 1, k + 1) is also graphic.
Let G be a realization of (1, 1, 2, 2, . . . , k, k) with vertices ui and vi having degree i for each i = 1, . . . , k.
Add to G two new vertices w and w′ and the edges ww′ and wui for all i = 1, . . . , k. In the resulting graph
w′ and v1 have degree 1, u1 and v2 have degree 2, u2 and v3 have degree 3, . . . , uk−1 and vk have degree k,
and uk and w have degree k + 1. •


