Total points: 30 (+ 6 bonus)

February 26, 2003

Total time: 2 hours

(1)

(2)

(6)

[This test is closed-book, but open-notes.]

1. Which of the following propositions are true? Provide brief explanations to justify your verdicts. (2×6)

(a) If u and v are the only vertices of odd degree in a graph G, then G contains a u, v-path.

(b) Let G be a connected graph with at least two vertices and with $\delta(G) < \Delta(G)$. Deleting a vertex of degree $\delta(G)$ can not reduce the average degree.

(c) The edge uv in a simple graph G is a cut-edge, if and only if $n(G) \ge d(u) + d(v)$.

(d) Every graph with fewer edges than vertices has a component that is a tree.

(e) If G is an Eulerian graph with edges e, e' sharing a vertex, then G has an Eulerian circuit in which e and e' appear consecutively.

(f) Let D = (a, a, ..., a, b, b, ..., b) be a sequence of positive integers with k > 0 occurrences of a and l > 0 occurrences of b. Also assume that ka + lb is even and that 0 < b < a < k + l. Then D is a graphic sequence.

- **2.** Let G_1 and G_2 be simple graphs with $n(G_i) = n_i$ and $e(G_i) = e_i$ for i = 1, 2. The product $G_1 \times G_2$ is defined as the graph with vertex set $V(G_1) \times V(G_2)$ and with (u_1, u_2) and (v_1, v_2) adjacent, if and only if either
 - $u_1 = v_1$ and u_2 is adjacent to v_2 in G_2
 - or

 $u_2 = v_2$ and u_1 is adjacent to v_1 in G_1 .

- (a) Draw $P_2 \times P_3$.
- (b) Prove that $n(G_1 \times G_2) = n_1 n_2$ and $e(G_1 \times G_2) = n_1 e_2 + n_2 e_1$. (1+2)
- (c) Prove or disprove: If G_1 and G_2 are regular, then so is $G_1 \times G_2$.
- 3. Let G be a connected graph with at least three vertices. Prove that G has two vertices x, y such that:

1) $G \setminus \{x, y\}$ is connected, and

2) x, y are adjacent or have a common neighbor (in G).

(**Hint:** Consider a longest path in *G*.)

- 4. Let G be an n-vertex simple graph with the property that for some k, 1 < k < n-1, every k-vertex induced subgraph of G has m edges.
 - (a) Show that for $k \leq l \leq n$ every *l*-vertex induced subgraph of G has $m\binom{l}{k} / \binom{l-2}{k-2}$ edges. (3)

(b) Deduce that G is either K_n or \overline{K}_n . (Hint: Use Part (a) to conclude that the number of edges between u and v is independent of the choice of $u, v \in V(G)$.) (3)

5. (a) Prove that every tree with maximum degree $\Delta > 1$ has at least Δ vertices of degree 1. (3)

(b) Show that the bound of Part (a) is best possible by constructing an *n*-vertex tree with exactly Δ vertices of degree 1 for every choice of n, Δ with $n > \Delta \ge 2$. (3)