
17622 Advanced graph theory
Solutions to the exercises in the Mid Semester Examination, Spring 2002-03

1. Which of the following propositions are true? Provide brief explanations to justify your verdicts.

(a) If u and v are the only vertices of odd degree in a graph G, then G contains a u, v-path.

(b) Let G be a connected graph with at least two vertices and with δ(G) < ∆(G). Deleting a vertex of degree δ(G)
can not reduce the average degree.

(c) The edge uv in a simple graph G is a cut-edge, if and only if n(G) > d(u) + d(v).

(d) Every graph with fewer edges than vertices has a component that is a tree.

(e) If G is an Eulerian graph with edges e, e′ sharing a vertex, then G has an Eulerian circuit in which e and e′ appear
consecutively.

(f) Let D = (a, a, . . . , a, b, b, . . . , b) be a sequence of positive integers with k > 0 occurrences of a and l > 0

occurrences of b. Also assume that ka+ lb is even and that 0 < b < a < k + l. Then D is a graphic sequence.

Solution (a) True: Let H be the component of G, that contains u. If v /∈ V (H), then H contains an odd
number (one) of vertices of odd degree, a contradiction. Thus u and v lie in the same component of G.

(b) False: Consider the following graph:
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The average degree of G is 2e(G)/n(G) = 20/7 = 2.857 . . . , whereas the average degree of G \ v is
2e(G \ v)/n(G \ v) = 16/6 = 2.666 . . . .

(c) False: Again consider the graph of Part (b). uv is not a cut-edge (since it lies on a cycle), whereas
7 = n(G) > d(u) + d(v) = 2 + 2. The ‘only if’ part is however true, as one can prove (easily).

(d) True: LetG be a graph with e(G) < n(G) and letG1, . . . , Gk be the components ofG. Assume that no
Gi is a tree. Then e(Gi) > n(Gi) for all i = 1, . . . , k (because a connected graphH with e(H) < n(H)−1
is not connected, with e(H) = n(H)− 1 is a tree and with e(H) > n(H) is not acyclic). Summing up for
all i = 1, . . . , k gives e(G) > n(G), a contradiction.

(e) False: As a counterexample consider the following graph:

e’
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(f) False: The sequence (3, 3, 1, 1) is not graphic, for if it were so, then (2, 0, 0) would also be graphic, but
a simple graph having a vertex of degree two must contain at least two other vertices of positive degree. •

2. Let G1 and G2 be simple graphs with n(Gi) = ni and e(Gi) = ei for i = 1, 2. The p r o d u c t G1 ×G2 is defined as
the graph with vertex set V (G1)× V (G2) and with (u1, u2) and (v1, v2) adjacent, if and only if either

u1 = v1 and u2 is adjacent to v2 in G2

or
u2 = v2 and u1 is adjacent to v1 in G1.

(a) Draw P2 × P3.

(b) Prove that n(G1 ×G2) = n1n2 and e(G1 ×G2) = n1e2 + n2e1.

(c) Prove or disprove: If G1 and G2 are regular, then so is G1 ×G2.



Solution (a)
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(b) Let us denote G := G1 × G2. Since V (G) = V (G1) × V (G2), we have n(G) = n1n2. In
order to count the number of edges in G first note that since G is simple, the neighborhood NG(u, v)
of (u, v) in G is the disjoint union of the sets {(u′, v) | u′ ∈ NG1(u)} and {(u, v′) | v′ ∈ NG2(v)}.
Therefore, dG(u, v) = dG1(u) + dG2(v). Summing over all (u, v) pairs yields 2e(G) =

∑
u,v dG(u, v) =

n2
∑
u dG1(u) + n1

∑
v dG2(v) = n2 × 2e1 + n1 × 2e2, i.e., e(G) = n1e2 + n2e1.

(c) The statement is true. Let G1 be k1-regular and let G2 be k2-regular. We have deduced in Part (b) that
for (u, v) ∈ V (G) we have dG(u, v) = dG1(u) + dG2(v) = k1 + k2, which is independent of the choice of
u and v. Thus G is k1 + k2-regular. •

3. Let G be a connected graph with at least three vertices. Prove that G has two vertices x, y such that:
1) G \ {x, y} is connected, and
2) x, y are adjacent or have a common neighbor (in G).

(Hint: Consider a longest path in G.)

Solution Let P be a path of maximum length in G. Since G is connected and has at least three vertices,
it follows that P contains at least three points. Let x be an endpoint of P . By the maximality of P any
neighbor of x lies on P . Let z be the neighbor of x along P . We consider two separate cases.

Case 1: z does not have a neighbor outside P .
In this case take y := z, G′ := G \ {x, y}. The situation is described in the following figure:
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Let u, v ∈ V (G′) = V (G) \ {x, y}. If u, v are both on P , then there is a u, v-path (a subpath of P ) in
G′. Now consider the case that one of u and v is on P , the other outside P . By symmetry one may take u
outside P . Since G is connected, there is a u, v-path Q in G. Let w be the first vertex on Q, that belongs to
P . Since neither x nor y has a neighbor outside V (P ), it follows that w /∈ {x, y}. Thus the part of Q from
u to w and the part of P from w to v form a u, v-path in G′. Finally consider the case that both u and v are
outside P . There is a u, v-path in G, call it Q again. If Q does not contain a vertex of P , then Q remains
in G′. Otherwise let w and w′ be the first and last vertices of Q, that lie on P . We have w,w′ /∈ {x, y} as
before. Now the part of Q from u to w, the part of P from w to w′ and the part of Q from w′ to v produce a
u, v-path in G′.

Case 2: z has a neighbor y outside P .
Take G′ := G \ {x, y}. The situation is now described in the following figure. Note that y is not necessarily
uniquely determined in this case, but any choice y of a neighbor of z outside P will serve our purpose.
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Since P is a path of maximum length in G, it follows that y (like x) has all its neighbors (except perhaps
itself) on P . Take any u, v ∈ V (G′) = V (G) \ {x, y}. If u, v are both on P , then there is a u, v-path (a



subpath of P ) in G′. If u is outside P and v is on P , then consider the first point w on P of a u, v-path Q
in G. Then w 6= x, since x has no neighbor outside P . The similar property of y implies that the part of Q
from u to w can not pass through y. But then the u,w-subpath of Q and the w, v-subpath of P constitute a
u, v-path in G′. Finally suppose that both u and v are outside P . Consider a u, v-path Q in G. If Q does not
meet P , it does not contain y as well, i.e., Q remains in G′. Otherwise take w and w′ to be the first and last
vertices of Q on P . As before neither w nor w′ equals x or y and the u,w-subpath of Q, the w,w′-subpath
of P and the w′, v-subpath of Q constitute a u, v-path in G′. •

4. Let G be an n-vertex simple graph with the property that for some k, 1 < k < n−1, every k-vertex induced subgraph
of G has m edges.

(a) Show that for k 6 l 6 n every l-vertex induced subgraph of G has m
(
l
k

)
/
(
l−2
k−2

)
edges.

(b) Deduce that G is either Kn or K̄n. (Hint: Use Part (a) to conclude that the number of edges between u and v is
independent of the choice of u, v ∈ V (G).)

Solution (a) Let H be an l-vertex induced subgraph of G. For any k-subset X of V (H) the subgraph of
H (i.e., of G) induced by X has m edges by hypothesis. If we vary X over all of the

( l
k

)
possibilities (of

choosing a k-subset from an l-set) and sum the numbers of edges in all these k-vertex induced subgraphs
of H , we get a total of m

( l
k

)
edges. All these edges are those of H counted multiple times. An edge

uv ∈ E(H) is counted in H[X] if and only if both u and v belong to X . But the number of k-subsets of
V (H) containing u and v is

( l−2
k−2

)
. (Pick the k−2 vertices ofX \{u, v} from V (H)\{u, v} in any possible

way.) Thus in the sum of numbers of edges built above every edge uv of H is counted exactly
( l−2
k−2

)
times.

It follows that e(H) = m
( l
k

)
/
( l−2
k−2

)
.

(b) Let u, v be arbitrary (but distinct) vertices of G and let ε(u, v) ∈ {0, 1} denote the number of edges
in G between u and v. For x ∈ V (G) let n1(x) denote the number of edges of G having x as one
endpoint. Also for distinct x, y ∈ V (G) let n2(x, y) denote the number of edges in G having x or y
(or both) as one endpoint. It then follows that ε(u, v) = n1(u) + n1(v) − n2(u, v). Now n1(u) =

n(G)−n(G\u) and hence by Part (a) we have n1(u) = m
[(n
k

)
/
(n−2
k−2

)− (n−1
k

)
/
(n−3
k−2

)]
. Similarly, n1(v) =

m
[(n
k

)
/
(n−2
k−2

)− (n−1
k

)
/
(n−3
k−2

)]
. Finally, n2(u, v) = n(G)−n(G\{u, v}) = m

[(n
k

)
/
(n−2
k−2

)− (n−2
k

)
/
(n−4
k−2

)]
.

Therefore, ε(u, v) = m
[(n
k

)
/
(n−2
k−2

)− 2
(n−1
k

)
/
(n−3
k−2

)
+
(n−2
k

)
/
(n−4
k−2

)]
. This quantity is independent of the

choice of u and v. If ε(u, v) = 0 for all u, v ∈ V (G), then G = K̄n. On the other hand, if ε(u, v) = 1 for
all u, v ∈ V (G), then G = Kn. •

5. (a) Prove that every tree with maximum degree ∆ > 1 has at least ∆ vertices of degree 1.

(b) Show that the bound of Part (a) is best possible by constructing an n-vertex tree with exactly ∆ vertices of degree
1 for every choice of n,∆ with n > ∆ > 2.

Solution (a) Let T be a tree with ∆(T ) = ∆ > 1. We view T as a
tree rooted at a vertex r of degree ∆. Let u1, . . . , u∆ be the children of
r and let Ti be the subtree of T rooted at ui (for each i = 1, . . . ,∆).
If Ti has no vertex other than ui, then ui is a vertex of T of degree 1.
On the other hand, if Ti has > 2 vertices, it has at least 2 vertices of
degree 1 (of which one can be ui itself), that is, at least one vertex in
V (Ti) \ {ui} is a vertex of degree 1 in Ti and hence in T as well.
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(b) Take T2, . . . , T∆ to be single-vertex trees and T1 to be a path with n − ∆ vertices and with u1 as an
endpoint. •
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