Solutions to the exercises in the Mid Semester Examination, Spring 2002-03

1. Which of the following propositions are true? Provide brief explanations to justify your verdicts.
(a) If v and v are the only vertices of odd degree in a graph G, then G contains a u, v-path.

(b) Let G be a connected graph with at least two vertices and with 6(G) < A(G). Deleting a vertex of degree J(G)
can not reduce the average degree.

(c) The edge wv in a simple graph G is a cut-edge, if and only if n(G) = d(u) + d(v).
(d) Every graph with fewer edges than vertices has a component that is a tree.

(e) If G is an Eulerian graph with edges e, e’ sharing a vertex, then G has an Eulerian circuit in which e and e’ appear
consecutively.

® LetD = (a,a,...,a,b,b,...,b) be a sequence of positive integers with k& > 0 occurrences of ¢ and [ > 0
occurrences of b. Also assume that ka + [b is even and that 0 < b < a < k + [. Then D is a graphic sequence.

Solution (a) True: Let H be the component of G, that contains u. If v ¢ V(H ), then H contains an odd
number (one) of vertices of odd degree, a contradiction. Thus u and v lie in the same component of G.

(b) False: Consider the following graph:

v

The average degree of G is 2e(G)/n(G) = 20/7 = 2.857..., whereas the average degree of G \ v is
2e(G\v)/n(G\v) =16/6 = 2.666....
(c) False: Again consider the graph of Part (b). uv is not a cut-edge (since it lies on a cycle), whereas

7=n(G) > d(u) + d(v) = 2+ 2. The ‘only if” part is however true, as one can prove (easily).

(d) True: Let G be a graph with e(G) < n(G) and let G4, . .., G, be the components of G. Assume that no
G;isatree. Thene(G;) > n(G;) foralli =1, ..., k (because a connected graph H withe(H) < n(H)—1
is not connected, with e(H) = n(H) — 1 is a tree and with e(H) > n(H) is not acyclic). Summing up for
alli =1,...,k gives e(G) > n(G), a contradiction.

(e) False: As a counterexample consider the following graph:

e

(f) False: The sequence (3, 3,1, 1) is not graphic, for if it were so, then (2,0, 0) would also be graphic, but
a simple graph having a vertex of degree two must contain at least two other vertices of positive degree. e

2. Let Gy and G4 be simple graphs with n(G;) = n; and e(G;) = e; fori = 1,2. The product G; x G5 is defined as
the graph with vertex set V(G1) x V(G2) and with (u1, us) and (v1, v2) adjacent, if and only if either

u1 = v; and us is adjacent to vy in G4
or
ug = vy and w4 is adjacent to v1 in G.

(a) Draw P, x Ps.
(b) Prove that n(G; x G3) = ning and e(G1 X Go) = njes + noe;.

(¢) Prove or disprove: If G and G4 are regular, then so is G; X Ga.
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(b) Let us denote G := G X Gy. Since V(G) = V(G1) x V(G3), we have n(G) = niny. In
order to count the number of edges in G first note that since G is simple, the neighborhood N¢(u,v)
of (u,v) in G is the disjoint union of the sets {(u’,v) | v' € Ng,(u)} and {(u,v’) | v € Ng,(v)}.
Therefore, dg(u,v) = dg, (u) + dg,(v). Summing over all (u,v) pairs yields 2¢e(G) = >, , da(u,v) =
na >, da, (u) +n1 >, dg,(v) = na X 2e1 +ny X 2ea, ie., e(G) = niea + naey.

(c) The statement is true. Let G be k;-regular and let G2 be ka-regular. We have deduced in Part (b) that

for (u,v) € V(G) we have dg(u,v) = dg, (u) + dg,(v) = k1 + ka, which is independent of the choice of
w and v. Thus G is k1 + ko-regular. °

. Let G be a connected graph with at least three vertices. Prove that G has two vertices x, y such that:
1) G\ {z,y} is connected, and
2) x,y are adjacent or have a common neighbor (in G).

(Hint: Consider a longest path in G')

Solution Let P be a path of maximum length in GG. Since G is connected and has at least three vertices,
it follows that P contains at least three points. Let = be an endpoint of P. By the maximality of P any
neighbor of z lies on P. Let z be the neighbor of = along P. We consider two separate cases.

Case 1: z does not have a neighbor outside P.

In this case take y := z, G’ := G\ {z, y}. The situation is described in the following figure:

X P

Let u,v € V(G') = V(G) \ {z,y}. If u,v are both on P, then there is a u, v-path (a subpath of P) in
G’. Now consider the case that one of u and v is on P, the other outside P. By symmetry one may take u
outside P. Since G is connected, there is a u, v-path @) in G. Let w be the first vertex on (), that belongs to
P. Since neither x nor y has a neighbor outside V'(P), it follows that w ¢ {z,y}. Thus the part of @) from
u to w and the part of P from w to v form a u, v-path in G’. Finally consider the case that both u and v are
outside P. There is a u, v-path in G, call it Q) again. If ) does not contain a vertex of P, then () remains
in G’. Otherwise let w and w’ be the first and last vertices of @, that lie on P. We have w, w’ ¢ {z,y} as
before. Now the part of ) from u to w, the part of P from w to w’ and the part of @ from w’ to v produce a
u, v-path in G'.

Case 2: z has a neighbor y outside P.

Take G’ := G'\ {z, y}. The situation is now described in the following figure. Note that y is not necessarily
uniquely determined in this case, but any choice y of a neighbor of z outside P will serve our purpose.

y

Since P is a path of maximum length in G, it follows that y (like x) has all its neighbors (except perhaps
itself) on P. Take any u,v € V(G') = V(G) \ {x,y}. If u,v are both on P, then there is a u, v-path (a



in G. Then w # z, since x has no neighbor outside P. The similar property of y implies that the part of @
from u to w can not pass through y. But then the u, w-subpath of () and the w, v-subpath of P constitute a
u, v-path in G’. Finally suppose that both w and v are outside P. Consider a u, v-path @) in G. If @ does not
meet P, it does not contain y as well, i.e., Q remains in G’. Otherwise take w and w’ to be the first and last
vertices of @ on P. As before neither w nor w’ equals x or y and the u, w-subpath of @, the w, w’-subpath
of P and the w’, v-subpath of @) constitute a u, v-path in G. )

. Let G be an n-vertex simple graph with the property that for some k, 1 < k < n— 1, every k-vertex induced subgraph
of G has m edges.

(a) Show that for k < I < n every I-vertex induced subgraph of G has m () /(L_2) edges.

(b) Deduce that G is either K, or K,,. (Hint: Use Part (a) to conclude that the number of edges between v and v is
independent of the choice of u,v € V(G).)

Solution (a) Let H be an [-vertex induced subgraph of G. For any k-subset X of V' (H) the subgraph of
H (i.e., of G) induced by X has m edges by hypothesis. If we vary X over all of the (,i) possibilities (of
choosing a k-subset from an /-set) and sum the numbers of edges in all these k-vertex induced subgraphs
of H, we get a total of m(,i) edges. All these edges are those of H counted multiple times. An edge
wv € E(H) is counted in H[X] if and only if both u and v belong to X. But the number of k-subsets of
V(H) containing v and v is (]i:%) (Pick the k — 2 vertices of X \ {u, v} from V(H )\ {u, v} in any possible
way.) Thus in the sum of numbers of edges built above every edge uv of H is counted exactly ( 2:22) times.

It follows that e(H ) = m(,lc)/(,l;zz)

(b) Let u, v be arbitrary (but distinct) vertices of G and let e(u,v) € {0, 1} denote the number of edges
in G between v and v. For x € V/(G) let ny(z) denote the number of edges of G having = as one
endpoint. Also for distinct z,y € V(G) let na(z,y) denote the number of edges in G having z or y
(or both) as one endpoint. It then follows that e(u,v) = ni(u) + n1(v) — na(u,v). Now nq(u) =
n(G)—n(G\u) and hence by Part (a) we have nq (u) = m [(2)/(2:3) - (”;1)/(2:3)} Similarly, ny (v) =
m (/G2 = ("0)/ (3] Finally, na(u,0) = n(G)=n(G\{u,v}) = m [()/(:3) = (/23]
Therefore, €(u,v) = m [(Z) /G2 =20/ G720 + (M) (2:3)} This quantity is independent of the
choice of u and v. If €(u,v) = 0 for all u,v € V(G), then G = K,,. On the other hand, if €(u,v) = 1 for
all u,v € V(G), then G = K,,. o

. (@) Prove that every tree with maximum degree A > 1 has at least A vertices of degree 1.

(b) Show that the bound of Part (a) is best possible by constructing an n-vertex tree with exactly A vertices of degree
1 for every choice of n, A withn > A > 2.

Solution (a) Let T be a tree with A(T) = A > 1. We view T as a
tree rooted at a vertex r of degree A. Let uy, ..., ua be the children of
r and let T; be the subtree of T rooted at u; (for eachi = 1,...,A).
If T} has no vertex other than u;, then u; is a vertex of 1" of degree 1.
On the other hand, if 7; has > 2 vertices, it has at least 2 vertices of
degree 1 (of which one can be u; itself), that is, at least one vertex in
V(T;) \ {u;} is a vertex of degree 1 in 7; and hence in 7" as well.

(b) Take Ty, ..., Ta to be single-vertex trees and T3 to be a path with n — A vertices and with u; as an
endpoint. °
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