		17022 Auvanceu graph theory	
		End Semester Examination, Spring 2002-03	
		Total points: 60April 28, 2003Total time: 3 hours	
		[This test is open-West (and open-notes), but closed from all other directions.]	
	1.	Which of the following statements are true? Give brief explanations.	(2 × 8)
Graph theory is damn easy!		(a) A simple graph having no cycles has exactly one spanning tree.	
		(b) An <i>M</i> -alternating path of odd length must be <i>M</i> -augmenting.	
		(c) A graph G with at least three vertices is 2-connected if and only if each edge of G lies on some cycle (not necessarily unique).	
		(d) A 1-edge-connected graph must contain at least one cut edge.	
		(e) $\kappa(G) = \kappa'(G) = \delta(G)$ for a 3-regular graph G.	
		(f) All cut edges in a plane graph belong to the boundary of the outer face.	
		(g) Every subgraph of a non-planar graph, induced by six or more vertices, is non-planar.	
		(h) Let G be a plane graph containing a cut vertex. Then the dual G^* has a cut vertex.	
	2.	Prove or disprove:	(2×5)
What? You		(a) G is a forest if and only if every connected subgraph of G is an induced subgraph.	
		(b) Let G be a connected graph with at least two vertices and let $v \in V(G)$. Then there is a maximum matching of G that saturates v.	
		(c) If a graph G has a perfect matching, then $ N(S) \ge S $ for every $S \subseteq V(G)$.	
call it difficult!		(d) A simple connected graph G with $n(G) = e(G)$ is 3-colorable.	
		(e) Every non-trivial connected graph has two vertices that are not cut vertices.	
I am good at filthy counting.	3.	Count the number of spanning cycles (also called Hamiltonian circuits) in:	(2 × 3)
		(a) K_n for $n \ge 3$.	
		(b) $K_n \setminus e$ for $n \ge 3$, where $e \in E(K_n)$.	
		(c) $K_{n,n}$ for $n \ge 2$.	
Hmmm ! So these are your big guns.	4.	Let G be a bipartite graph. Prove that $\alpha(G) = n(G)/2$, if and only if G has a perfect matching.	(4)
	5.	Let G be a graph with exactly k components. Let $b(G)$ denote the number of blocks in G and for $v \in V(G)$ let $b(v)$ denote the number of blocks of G to which v belongs. Derive the formula: $b(G) - k = \sum_{v \in V(G)} [b(v) - 1]$.	(4)
	6.	Let G be a simple n -vertex graph. Prove that:	(4×2)
	0.	(a) If $\delta(G) \ge n-2$, then $\kappa(G) = \delta(G)$	(•/~=)
		(b) If $\delta(G) \ge \lfloor n/2 \rfloor$, then $\kappa'(G) = \delta(G)$.	
	7.	Let $n \in \mathbb{N}$, $n \ge 3$, and let G be the simple graph with $V(G) = \{v_1, \ldots, v_n\}$ and $E(G) = \{v_i v_j \mid i - j \le 3\}$. Prove that G is a maximal planar graph.	(4)
Wow!!!	8.	Let G be a (connected) graph having spanning trees of diameters 2 and l (for some $l \ge 2$). Show that for every $k, 2 \le k \le l$, G has a spanning tree of diameter k.	(8)

17622 Advanced graph theory