
17622 Advanced graph theory
Solutions to the exercises in the End Semester Examination, Spring 2002-03

1. (a) False: A disconnected simple acyclic graph does not have a spanning tree.

(b) False: An M -augmenting path must have the endpoints M -unsaturated. If the first and last edges on an
odd M -alternating path are in M , this condition is not satisfied.

(c) False: The bow-tie has a cut-vertex but no cut-edges.

(d) False: A 1-edge-connected graph can also be 2-edge-connected.

(e) False: For a 3-connected graph G one has κ(G) = κ′(G). One may have this common value less than
δ(G). For example, the following graph is 3-regular with κ(G) = κ′(G) = 1.

(f) False: Consider the following plane graph:

(g) False: C6 is a planar graph, but is an induced subgraph of the non-planar graph C6 +K5.

(h) False: Consider the plane graph G of Part (f). G has a cut vertex (the vertex of degree 3). G∗ has two
vertices and hence cannot have a cut vertex.

2. (a) True: Let G be a forest and let H be a connected subgraph of G. Since G is acyclic, so is H , i.e., H is
a tree. Let e be an edge in E(G) \ E(H) and with endpoints in V (H). Adding e to H yields a subgraph of
G containing a cycle, a contradiction. So there are no such edges e, i.e., H is an induced subgraph of G.
For the converse consider a spanning tree T of a component H of G. Since T is an induced subgraph, we
have H = T , i.e., every component of G is a tree.

(b) True: Let u 6= v be a neighbor of v in G. (Such a neighbor exists, since G is connected and has at least
two vertices.) Start with the matching M consisting of an edge with endpoints u and v. M saturates u and
v. If M is already maximum, we are done, else choose an M -augmenting path and get a bigger matching
(with one more edge and with two more saturated vertices). If the augmented matching is maximum, we are
through, else augment it further until a maximum matching is obtained. Each such augmentation leaves v in
the set of saturated vertices.

(c) True: Let {e1, . . . , ek} be a perfect matching of G and let ui and vi be the endpoints of ei. Then V (G)
consists of the 2k vertices u1, . . . , uk, v1, . . . , vk. Let S = {ui1 , . . . , uis} ∪ {vj1 , . . . , vjt} be a subset of
V (G) of size s+t. Then the neighborhood of S contains (at least) the s+t vertices uj1 , . . . , ujt , vi1 , . . . , vis ,
i.e., |N(S)| > |S|.
(d) True: G is a tree plus an extra edge, i.e, G contains a unique cycle. Let e be an edge on this cycle. G \ e
is a tree and hence bipartite and consequently 2-colorable. Consider a proper 2-coloring of G \ e. If the two
endpoints of e receive different colors, G also is 2-colorable. Otherwise change the color of (exactly) one
of the endpoints of e to a third color to get a proper 3-coloring of G.

(e) True: Choose a pair u, v of (distinct) vertices in G such that the distance d(u, v) is maximum. Suppose
that u is a cut-vertex of G, i.e., G \ u is disconnected. Choose a vertex w from a component other than the
one containing v. Every v, w-path goes through u, i.e., d(v, w) > d(v, u), a contradiction to the choice of
u, v. Thus u is not a cut-vertex of G. Similarly v is not a cut-vertex of G.

3. (a) Let V (Kn) = {1, 2, . . . , n}. A spanning cycle inKn can be traversed starting from the vertex with label
1 and ending in the same vertex, i.e., a spanning cycle of Kn is of the form (1, v2, . . . , vn) where v2, . . . , vn
is a permutation of 2, . . . .n. There (n − 1)! such permutations. Two different permutations v2, . . . , vn and



vn, . . . , v2 lead to the same spanning cycle (traversed in the two different directions). Hence Kn has exactly
(n− 1)!/2 spanning cycles.

(b) The number of spanning cycles in Kn \ e is (n− 1)!/2− k, where k is the number of spanning cycles
of Kn containing the edge e. By symmetry k is independent of the choice of e. Letting S denote the set of
all spanning cycles of Kn then yields

∑
C∈S e(C) = n× (n− 1)!/2 = k × n(n− 1)/2, i.e., k = (n− 2)!.

Kn \ e has exactly (n− 1)!/2− (n− 2)! = (n− 3)(n− 2)!/2 spanning cycles.

(c) Every spanning cycle of Kn,n alternates between the vertices of the two partite sets X = {1, 2, . . . , n}
and Y = {1′, 2′, . . . , n′} of Kn,n and is of the form (1, v1, u2, v2, . . . , un, vn), where u2, . . . , un is a
permutation of 2, . . . , n and v1, . . . , vn is a permutation of 1′, 2′, . . . , n′. There are (n− 1)!n! such choices.
Finally taking into account the two possible directions of traversal along a given cycle we conclude that
Kn,n has exactly (n− 1)!n!/2 spanning cycles.

4. [if] First note that a graph with isolated vertices cannot have a perfect matching; so G contains no isolated
vertices. We have α′(G) = n(G)/2. But α′(G) + β′(G) = n, so that β′(G) = n(G)/2. Finally since G is
a bipartite graph without isolated vertices, we have α(G) = β ′(G).
[only if] LetG be anX,Y -bigraph. Since α(G) = n(G)/2, |X|+|Y | = n(G) andX and Y are independent
sets, we must have |X| = |Y | = n(G)/2. If X contains an isolated vertex v of G, then Y ∪ {v} is again
an independent set of size n(G)/2 + 1, a contradiction. So X and similarly Y (and hence G) do not
contain isolated vertices. But then β ′(G) = α(G) = n(G)/2. Since α′(G) + β′(G) = n(G), we have
α′(G) = n(G)/2, i.e., a maximum matching of G saturates every vertex of X and of Y , and hence is a
perfect matching.

5. The blocks of a graph are those of its components; so it is sufficient to prove the equation for a connected
graph G, i.e., for the case k = 1. We know that a vertex v ∈ V (G) belongs to two (or more) blocks of
G if and only if v is a cut-vertex of G. Therefore, we can write

∑
v∈V (G)[b(v) − 1] =

∑r
i=1[b(vi) − 1] =

[
∑r
i=1 b(vi)]− r , where v1, . . . , vr are all the cut-vertices of G. Consider the block-cutpoint graph B(G) of

G. It is a bipartite graph. Counting its edges using endpoints in the partite set {v1, . . . , vr} gives e(B(G)) =∑r
i=1 b(vi). Since G is connected, B(G) is a tree and hence e(B(G)) = n(B(G)) − 1 = b(G) + r − 1.

Thus b(G)− 1 = e(B(G))− r = [
∑r
i=1 b(vi)]− r.

6. (a) First consider δ(G) = n− 1. Then G is Kn and has connectivity n− 1. So assume that δ(G) = n− 2.
Let S be a vertex-cut of G. Suppose that S has 6 n− 3 vertices. G \S is disconnected and contains at least
3 vertices; so we can find distinct u, v, w ∈ V (G) \ S such that v and w are not neighbors of u in G \ S
and hence in G as well. G being simple, u is also not a neighbor of itself. Thus δ(G) 6 |N(u)| 6 n− 3, a
contradiction. Thus |S| > n− 2, i.e., every vertex cut of G has at least n− 2 vertices, i.e., κ(G) > n− 2.
On the other hand, κ(G) 6 δ(G) = n− 2. So κ(G) = n− 2.

(b) Let [S, S] be an edge-cut of G with |S| = k (1 6 k 6 n− 1). Then |[S, S]| > kδ(G)− k(k − 1)/2 =
δ(G) + (k − 1)(δ(G) − k/2) > δ(G) + (k − 1)(bn/2c − (n − 1)/2) > δ(G). That is, every edge-cut
of G contains at least δ(G) edges, implying that κ′(G) > δ(G). Since κ′(G) 6 δ(G) always, we have
κ′(G) = δ(G).

7. The following figure shows a planar embedding of G for the case n = 8. It is clear that this construction
can be done for all n > 3. More explicitly, start with the three cycle for n = 3. So let n > 4 and
inductively assume that the graph G \ vn contains a face whose boundary is the 3-cycle containing the
vertices vn−3, vn−2, vn−1. Put vn in the interior of this face and join vn to vn−3, vn−2, vn−1. This again
creates a face whose boundary is the 3-cycle containing the vertices vn−2, vn−1, vn.
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We have:

e(G) = |{vivi+1 | 1 6 i 6 n− 1}|+ |{vivi+2 | 1 6 i 6 n− 2}|+ |{vivi+3 | 1 6 i 6 n− 3}|
= (n− 1) + (n− 2) + (n− 3)

= 3n− 6.

Thus G is a maximal planar graph.

8. Since loops and multiple edges do not affect existence (and diameters) of spanning trees in a graph, we may
assume that G is simple. Let T2 and Tl be spanning trees of G of diameters 2 and l respectively. We are
supposed to construct a spanning tree Tk of G of diameter k with 2 6 k 6 l.
Let n := n(G). Since T2 has at least three vertices, n > 3. T2 is the star K1,n−1. Let v be the center of T2

(i.e., the only non-leaf vertex in T2). Since T2 is a subgraph ofG, v is adjacent to any vertex u ∈ V (G)\{v}.
Tl contains a path of length l. Take a sub-path P of length k in this path. Let u, u′ be the endpoints of P .
Consider the following three cases:

Case 1 : v is an internal vertex of P .
Take E(Tk) = E(P ) ∪ {vw | w ∈ V (G) \ V (P )}.

u v u’
P

Case 2 : v is one endpoint of P .
Because of symmetry we can assume that v = u. Let w′ be the neighbor of u′ on P . Delete the edge w′u′

from P and add the edge u′v = u′u to P . This gives us a u′, w′-path of length k in which v is an internal
vertex. Now use Case 1.

Case 3 : v is not on P .
Let w be the neighbor of u on P . Delete the vertex u (and the edge uw) from P and add the vertex v and
the edge vw to P . This gives us a v, u′-path of length k. Now use Case 2.


