Solutions to the exercises in the End Semester Examination, Spring 2002-03

1. (a) False: A disconnected simple acyclic graph does not have a spanning tree.

(b) False: An M -augmenting path must have the endpoints M -unsaturated. If the first and last edges on an
odd M -alternating path are in M, this condition is not satisfied.

(c) False: The bow-tie has a cut-vertex but no cut-edges.
(d) False: A 1-edge-connected graph can also be 2-edge-connected.

(e) False: For a 3-connected graph G one has x(G) = k’(G). One may have this common value less than
d(G). For example, the following graph is 3-regular with x(G) = x'(G) = 1.
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(f) False: Consider the following plane graph:

(g) False: Cj is a planar graph, but is an induced subgraph of the non-planar graph Cg + K.

(h) False: Consider the plane graph G of Part (f). G has a cut vertex (the vertex of degree 3). G* has two
vertices and hence cannot have a cut vertex.

2. (a) True: Let G be a forest and let H be a connected subgraph of G. Since G is acyclic, so is H, i.e., H is
atree. Let e be an edge in £(G) \ E(H ) and with endpoints in V' (H). Adding e to H yields a subgraph of
G containing a cycle, a contradiction. So there are no such edges ¢, i.e., H is an induced subgraph of G.

For the converse consider a spanning tree 1" of a component H of G. Since T is an induced subgraph, we
have H =T, i.e., every component of G is a tree.

(b) True: Let u # v be a neighbor of v in G. (Such a neighbor exists, since G is connected and has at least
two vertices.) Start with the matching M consisting of an edge with endpoints v and v. M saturates v and
v. If M is already maximum, we are done, else choose an M -augmenting path and get a bigger matching
(with one more edge and with two more saturated vertices). If the augmented matching is maximum, we are
through, else augment it further until a maximum matching is obtained. Each such augmentation leaves v in
the set of saturated vertices.

(c) True: Let {eq,...,ex} be a perfect matching of G and let u; and v; be the endpoints of e;. Then V (G)

consists of the 2k vertices w1, ..., u, v1,...,v;. Let S = {u;,...,u;, } U{vj,..., v} be a subset of
V(G) of size s+t. Then the neighborhood of S contains (at least) the s+¢ vertices uj,, . . ., Uj,, Vi, - - - , Vi,
ie., [N(S)| = |5|.

(d) True: G is a tree plus an extra edge, i.e, G contains a unique cycle. Let e be an edge on this cycle. G \ e
is a tree and hence bipartite and consequently 2-colorable. Consider a proper 2-coloring of G \ e. If the two
endpoints of e receive different colors, G also is 2-colorable. Otherwise change the color of (exactly) one
of the endpoints of e to a third color to get a proper 3-coloring of G.

(e) True: Choose a pair u, v of (distinct) vertices in G such that the distance d(u, v) is maximum. Suppose
that v is a cut-vertex of G, i.e., G \ u is disconnected. Choose a vertex w from a component other than the
one containing v. Every v, w-path goes through v, i.e., d(v,w) > d(v,u), a contradiction to the choice of
u, v. Thus u is not a cut-vertex of GG. Similarly v is not a cut-vertex of G.

3. (a) LetV(K,) ={1,2,...,n}. A spanning cycle in K, can be traversed starting from the vertex with label
1 and ending in the same vertex, i.e., a spanning cycle of K, is of the form (1, vo, ..., v,) where va, ..., v,
is a permutation of 2, ....n. There (n — 1)! such permutations. Two different permutations vo, . . . , v,, and



(n — 1)!/2 spanning cycles. 7

(b) The number of spanning cycles in K, \ e is (n — 1)!/2 — k, where k is the number of spanning cycles
of K, containing the edge e. By symmetry £ is independent of the choice of e. Letting .S denote the set of
all spanning cycles of K, then yields > rcge(C) =n x (n—1)!/2 =k xn(n—1)/2,ie., k= (n—2).
K, \ e has exactly (n — 1)!/2 — (n — 2)! = (n — 3)(n — 2)!/2 spanning cycles.

(c) Every spanning cycle of K, ,, alternates between the vertices of the two partite sets X = {1,2,...,n}
and Y = {1',2',...,n'} of K, and is of the form (1,v1,ug,v2,..., Uy, vy), Where ua, ..., uy, is a
permutation of 2,...,n and vy, ..., v, is a permutation of 1/,2’, ... n’. There are (n — 1)!n! such choices.
Finally taking into account the two possible directions of traversal along a given cycle we conclude that
K, ,, has exactly (n — 1)!n!/2 spanning cycles.

. [if] First note that a graph with isolated vertices cannot have a perfect matching; so G contains no isolated
vertices. We have o/ (G) = n(G)/2. But ' (G) + 3'(G) = n, so that 5/(G) = n(G)/2. Finally since G is
a bipartite graph without isolated vertices, we have a(G) = '(G).

[only if] Let G be an X, Y-bigraph. Since a(G) = n(G)/2, | X |+|Y| = n(G) and X and Y are independent
sets, we must have | X| = |Y| = n(G)/2. If X contains an isolated vertex v of G, then Y U {v} is again
an independent set of size n(G)/2 + 1, a contradiction. So X and similarly Y (and hence G) do not
contain isolated vertices. But then 3'(G) = a(G) = n(G)/2. Since /(G) + F(G) = n(G), we have
' (G) = n(@)/2, i.e., a maximum matching of G saturates every vertex of X and of Y, and hence is a
perfect matching.

. The blocks of a graph are those of its components; so it is sufficient to prove the equation for a connected
graph G, i.e., for the case k = 1. We know that a vertex v € V(&) belongs to two (or more) blocks of
G if and only if v is a cut-vertex of G. Therefore, we can write 3-,cy () [b(v) — 1] = X771 [b(v;) — 1] =
[>or_1 b(v;)]—r, where vy, . .., v, are all the cut-vertices of G. Consider the block-cutpoint graph B(G) of
G. Tt is a bipartite graph. Counting its edges using endpoints in the partite set {v1, ..., v, } gives e(B(G)) =

"1 b(vi). Since G is connected, B(G) is a tree and hence e¢(B(G)) = n(B(G)) — 1 = b(G) +r — 1.
Thus b(G) — 1 = e(B(G)) —r = [>i—1 b(vi)] — .

. (a) First consider §(G) = n — 1. Then G is K, and has connectivity n — 1. So assume that §(G) = n — 2.
Let S be a vertex-cut of G. Suppose that S has < n — 3 vertices. G \ S is disconnected and contains at least
3 vertices; so we can find distinct u,v,w € V(G) \ S such that v and w are not neighbors of v in G \ S
and hence in G as well. G being simple, u is also not a neighbor of itself. Thus 6(G) < |[N(u)| < n —3,a
contradiction. Thus |S| > n — 2, i.e., every vertex cut of G has at least n — 2 vertices, i.e., K(G) > n — 2.
On the other hand, k(G) < §(G) =n — 2. So k(G) =n — 2.

(b) Let [S, S] be an edge-cut of G with |S| = k (1 < k < n — 1). Then |[S, S]| = k§(G) — k(k —1)/2 =
Q)+ (k= 1)(0(G) — k/2) = 6(G) + (k—1)(|n/2] — (n —1)/2) > 6(G). That is, every edge-cut
of G contains at least 6(G) edges, implying that £’'(G) > 0(G). Since £'(G) < 0(G) always, we have
K(G) = 0(Q).

. The following figure shows a planar embedding of G for the case n = 8. It is clear that this construction
can be done for all n > 3. More explicitly, start with the three cycle forn = 3. Soletn > 4 and
inductively assume that the graph G \ v,, contains a face whose boundary is the 3-cycle containing the
vertices vn_3,Un—2,Un—1. Put vy, in the interior of this face and join v, to v,_3,v,—_2,v,—1. This again
creates a face whose boundary is the 3-cycle containing the vertices v,—9, Vn—1, Up,.-



"

We have:
e(G) = Howip [1<i<n—1}+ Huivige [ 1 <i <n =2} + [{oigs | 1 <i<n — 3}
= n—-1)+Mn—-2)+(n-3)
= 3n—6.

Thus G is a maximal planar graph.

. Since loops and multiple edges do not affect existence (and diameters) of spanning trees in a graph, we may
assume that G is simple. Let T5 and 7; be spanning trees of G of diameters 2 and [ respectively. We are
supposed to construct a spanning tree 7}, of G of diameter k with 2 < k < [.

Let n := n(G). Since T has at least three vertices, n > 3. T3 is the star K ,—1. Let v be the center of T5
(i.e., the only non-leaf vertex in T%). Since T is a subgraph of G, v is adjacent to any vertex u € V(G)\ {v}.
T, contains a path of length /. Take a sub-path P of length & in this path. Let u, u’ be the endpoints of P.
Consider the following three cases:

Case 1 : v is an internal vertex of P.
Take E(T);) = E(P)U{vw |w e V(G)\ V(P)}.

Case 2 : v is one endpoint of P.

Because of symmetry we can assume that v = u. Let w’ be the neighbor of u’ on P. Delete the edge w'v’
from P and add the edge u'v = u/u to P. This gives us a v/, w’-path of length k in which v is an internal
vertex. Now use Case 1.

Case 3 : visnoton P.

Let w be the neighbor of u on P. Delete the vertex v (and the edge uw) from P and add the vertex v and
the edge vw to P. This gives us a v, u'-path of length k. Now use Case 2.



