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CS60088 Foundations of Cryptography, Spring 2016–2017

End-Semester Test

25–April–2017 NC-141/142, NR-321/322, 2:00–5:00pm Maximum marks: 75

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

1. Let M = (Gen,Mac,Vrf ) be a message-authentication scheme.

(a) What is meant by the existential unforgeability of M. (5)

Solution An adversary makes a set Q of queries to the Mac oracle, and receives the corresponding tags. The task of the

adversary is to come up with a message m /∈ Q and a tag t such that Vrf (m, t) = 1. M is called existentially

unforgeable if any PPT adversary can succeed in the game with only negligible probability.

(b) Let Fk : {0,1}n → {0,1}n be a pseudorandom family of functions indexed by keys k ∈ K (you may

assume K = {0,1}n). Define a message authentication code for 2n-bit messages (m1,m2) (where m1,m2 ∈
{0,1}n) as Mac(m1,m2) = (Fk1

(m1),Fk2
(m2)), where k1 and k2 are uniformly random and independent

elements of K . Prove/Disprove: The scheme is existentially unforgeable. (5)

Solution False. Choose two distinct messages m,m′ ∈ {0,1}n. Query the Mac oracle about the pairs (m,m) and (m′,m′).
Let the tags received be (t1, t2) and (t ′1, t

′
2). Then, a valid tag on (m,m′) is (t1, t

′
2).
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2. (a) Describe the output feedback (OFB) mode of operation of a block cipher. (5)

Solution

Fk Fk Fk

IV

c c cc0 1 2 3

m m m1 2 3

...

(b) Demonstrate that the OFB mode is not IND-CCA2 secure. (5)

Solution Let c∗ = (c0,c1) be the challenge ciphertext of a one-block message Mb. But then, for any randomly chosen

non-zero ρ ∈ {0,1}∗, c = (c0,c1 ⊕ρ) 6= c∗ is an encryption of Mb ⊕ρ .
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3. Let Π= (Gen,Enc,Dec) be a symmetric encryption scheme. Let us define a game IND-RESTRICTED-CPA

played against Π by an adversary A . As in an IND-CPA (or IND-EAV) game, A supplies two messages

m0,m1 of the same length to the encryption oracle O . The oracle chooses a uniformly random bit b, and

sends an encryption c∗ = Enck(mb) to A as the challenge ciphertext. Before and after this IND-EAV

game, the adversary has access to O , and gets encryption assistance on messages chosen by A . The only

restriction is that A is never (neither in the pre-challenge nor in the post-challenge phase) allowed to make

an encryption query on m0 or m1. Eventually, A outputs a bit b′, and wins if and only if b′ = b. The scheme

Π is called IND-RESTRICTED-CPA secure if no PPT adversary can win this game with non-negligible

advantage. We call Π perfectly IND-RESTRICTED-CPA secure if any adversary—even if unbounded—

cannot have any advantage in winning the IND-RESTRICTED-CPA game against Π.

(a) Consider the IND-EAV secure scheme that encrypts m∈ {0,1}l(n) to c=m⊕G(k), where G : {0,1}n →
{0,1}l(n) is a pseudorandom generator (PRG), and k ∈ {0,1}n is the key. Prove that this scheme is not IND-

RESTRICTED-CPA secure. (5)

Solution The adversary chooses the messages m0 = 0l(n) and m1 = 1l(n) during the IND-EAV game. Let the challenge

ciphertext be c∗ = mb ⊕G(k). The adversary also chooses µ ∈ {0,1}l(n) \{m0,m1}, and makes an encryption

query on this message. Let c = µ ⊕ G(k) be the ciphertext returned by the encryption oracle. We have

c∗⊕ c = mb ⊕µ =

{

µ if b = 0,

µ if b = 1.

(b) Consider the IND-CPA secure construction using a truly random function f : {0,1}n → {0,1}n, that

encrypts m ∈ {0,1}n to (r, f (r)⊕m), where r ∈U {0,1}n. Prove/Disprove: This construction is perfectly

IND-RESTRICTED-CPA secure. (5)

Solution False. Each encryption query gives an adversary a pair (r, f (r)). Let q be the number of such pairs known to

the adversary. During the IND-EAV game, the encryption oracle chooses an r to encrypt mb, and this r is in the

set of known (r, f (r)) pairs with probability
q
2n . If so, the adversary wins with probability 1. If not, it makes a

random guess. Therefore the winning probability of the adversary is

q

2n
+
(

1−
q

2n

)

×
1

2
=

1

2
+

q

2n+1
.

For q > 0, the advantage of the adversary is non-zero.
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(c) Propose a construction of Π which is IND-RESTRICTED-CPA secure, but not IND-CPA secure.

Supply both the security and the insecurity proofs. (15)

Solution The construction

Let Fk : {0,1}n →{0,1}n be a family of pseudorandom permutations (PRPs) indexed by n-bit keys

k. The three components of the scheme work as follows.

Gen: Choose k ∈U {0,1}n.

Enc: c = Fk(m).

Dec: m = F−1
k (c).

IND-CPA insecurity

The scheme is deterministic.

IND-RESTRICTED-CPA security

Let A be a PPT IND-RESTRICTED-CPA adversary against this scheme with non-negligible

advantage Adv. The reduction agent Regent is given a permutation f : {0,1}n → {0,1}n in the

form of a black-box. With probability 1
2
, f is a truly random permutation, and with probability 1

2
,

f = Fk for some k ∈U {0,1}n. Regent plays the IND-RESTRICTED-CPA game with A in order to

become a distinguisher between random and pseudorandom permutations.

Encryption assistance: Upon the receipt of m ∈ {0,1}n from A , Regent forwards m to the black-

box, and relays its reply as the ciphertext c on m.

IND-EAV game: A issues two different messages m0,m1 ∈ {0,1}n to Regent. Regent chooses a bit

b ∈U {0,1}, and sends mb to the black-box, and relays the reply from the black-box back to A as

the challenge ciphertext c∗.

End of game: Eventually, A outputs a bit b′. Regent concludes that f is pseudorandom if b′ = b,

or random if b′ 6= b. To calculate the advantage of Regent in arriving at the correct decision about

f , consider two cases.

Case 1: f is a random permutation. By the rule of the game, A can never get the value of f (m0) or

f (m1). Given that f is truly random, both the cases c∗ = f (m0) and c∗ = f (m1) are equally likely,

so A cannot have any advantage in this case, and therefore Regent’s decision b′ 6= b is correct with

probability 1
2
.

Case 2: f = Fk for some k. In this case, A has the advantage Adv for deciding b correctly, so

Regent sees b′ = b with probability 1
2
+Adv.

Combining these two cases, we conclude that Regent makes the correct decision about f with

probability

1

2
×

1

2
+

1

2
×

(

1

2
+Adv

)

=
1

2
+

Adv

2
.

Given that Adv is non-negligible (in n), so too is Regent’s advantage. This contradicts the

assumption that PRPs are computationally indistinguishable from random permutations.
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Continue with the answer of Exercise 3(c)
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4. Pointcheval (Eurocrypt 1999) proposes IND-CPA and IND-CCA2 secure public-key encryption schemes

based on the dependent RSA problem (DRSAP). Let n = pq be an RSA modulus, gcd(e,φ(n)) = 1, and

d ≡ e−1 (mod φ(n)). The decisional DRSA problem (DDRSAP) is to decide, given α ,β ∈ Zn, whether

α ≡ ae (mod n) and β ≡ (a+1)e (mod n) for some a ∈ Zn. Consider the following encryption scheme for

m ∈ Zn. The scheme uses a hash function H : Zn ×Zn →{0,1}k, where k is the security parameter.

1. Choose a ∈U Zn.

2. Compute α ≡ ae (mod n) and γ = m(a+1)e (mod n).

3. Compute h = H(m,a).

4. A ciphertext for m is the triple (α ,γ ,h).

(a) Explain how to carry out decryption in this scheme. (5)

Solution The recipient uses the private exponent d to compute a ≡ αd (mod n), and obtains m ≡ γ(a+ 1)−e (mod n).
The recipient then verifies whether H(m,a) = h. If so, m is taken as the decryption result, otherwise decryption

fails.

In the rest of this exercise, you work out an IND-CCA2 security proof of this encryption scheme in the

random-oracle model. The proof is based upon the assumption that the DDRSAP is intractable. Let A be

a PPT adversary against this scheme with non-negligible advantage Adv. Ronald is a random oracle that

interacts with A .

(b) What is the objective of Ronald? (5)

Solution Ronald is given a pair (α∗,β ∗) ∈ Z2
n. It is provided that (α∗,β ∗) ≡ (ae,(a+ 1)e) (mod n) for some a ∈U Zn

with probability 1
2
, or (α∗,β ∗) ∈U Z2

n with probability 1
2
. Ronald’s objective is to decide what (α∗,β ∗) is (a

random DRSA pair or a random pair).
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(c) How does Ronald simulate encryption during the IND-CPA game? When is the simulation perfect? (5)

Solution Upon the receipt of two distinct messages m0,m1 ∈ Zn, Ronald chooses b ∈U {0,1}, computes γ∗ ≡
mbβ ∗ (mod n), selects h∗ ∈U {0,1}k, and sends the challenge ciphertext c∗ = (α∗,γ∗,h∗) to A .

If (α∗,β ∗) is a DRSA pair, then RSA decryption gives a unique a∗ ≡ (α∗)d (mod n), and for this a∗ we have

γ∗ ≡ mb(a
∗+1)e (mod n). Therefore c∗ is a valid ciphertext of mb if Ronald defines H(mb,a

∗) = h∗.

If (α∗,β ∗) is randomly chosen from Z∗
n, c∗ is a valid encryption of m0 or m1 with probability 2

n
, that is, with

probability 1− 2
n
, c∗ is an encryption of neither m0 nor m1.

(d) How does Ronald respond to random-oracle (H) queries? (5)

Solution Ronald maintains a table T of ((m,a),h) pairs. When a query (m,a) 6= (mb,a
∗) comes from A , Ronald looks

up at T . If some ((m,a),h) resides in T , the string h is returned to A . If not, a random h ∈U {0,1}k is chosen

by Ronald, ((m,a),h) is stored in T , and h is returned to A .

If the hash query H(mb,a
∗) comes (should be in the post-challenge phase, because before seeing α∗ it

is only with negligible probability that A makes a query on a∗), Ronald can verify by checking whether

(a∗)e ≡ α∗ (mod n). If so, h∗ is returned (after adding ((mb,a
∗),h∗) to T ). Otherwise, a uniform random

string is returned as usual.
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(e) How does Ronald simulate decryption? Comment on the perfectness of the simulation. (5)

Solution Let c = (α,γ ,h) be queried by A for decryption. Ronald looks up his table T to found out whether it stores an

entry ((m,a),h) (with the same h as in the query) for which α ≡ ae (mod n), and γ ≡ m(a+1)e (mod n). If so,

m is returned, otherwise failure is reported.

Let (α,γ ,h) be a valid ciphertext with H(m,a) not queried. Since all possible strings in {0,1}k are equally likely

to be H(m,a), we have H(m,a) = h with probability 1
2k , that is, a valid ciphertext is rejected with negligible

probability 1
2k .

(f) How is Ronald’s objective satisfied at the end of the game? (5)

Solution If A makes an H query on (mb,a
∗) (in the post-challenge phase), Ronald can easily check whether α ≡

(a∗)e (mod n) and β ≡ (a∗ + 1)e (mod n), and can solve his decision problem with certainty (actually, with

probability 1− 1
n
, since a random pair from Z∗

n can be a DRSA pair with probability 1
n

only). So suppose that

A never makes this hash query.

Eventually, A outputs a bit b′. Ronald decides that (α∗,β ∗) is a DRSA pair if b′ = b or a random pair if b′ 6= b.

If (α∗,β ∗) is a random DRSA pair (this has probability 1
2
), then A correctly outputs b′ = b with probability

1
2
+Adv. On the other hand, if (α∗,β ∗) is a random pair from Z∗

n, then with probability 1− 2
n
, c∗ is a valid

ciphertext of neither m0 nor m1, that is, A now has no advantage in guessing b, that is, b′ 6= b with probability
1
2
. To sum up, Ronald solves his decision problem correctly with probability

>
1

2
×

(

1

2
+Adv

)

+
1

2
×

(

1−
2

n

)

×
1

2
=

1

2
+

(

Adv

2
−

1

n

)

.

Since Adv is non-negligible and 1
n

is negligible, Ronald succeeds with non-negligible advantage.
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