CS60088 Foundations of Cryptography, Spring 2016–2017

Class Test

10-April-2017	CSE 107/120, 6:30-7:30pm	Maximum marks: 40

Roll no: _____ Name: _

[Write your answers in the question paper itself. Be brief and precise. Answer <u>all</u> questions.]

- 1. Bellare and Rogaway (ACM CCS 1993) propose the following public-key encryption scheme. Let f be a one-way trapdoor function, the message space be $\{0,1\}^l$, and $G : \{0,1\}^* \to \{0,1\}^l$ a hash function. The encryption of a message m is the pair (u, v), where u = f(r) for a uniformly random r in the domain of f, and $v = m \oplus G(r)$.
 - (a) How can a ciphertext (u, v) prepared by this encryption scheme be decrypted?

(5)

Solution The recipient uses his knowledge of the trapdoor to recover $r = f_{td}^{-1}(u)$. The message is then recovered as $m = v \oplus G(r)$.

(b) Prove that this scheme is IND-CPA secure in the random-oracle model, given that f is one-way. Ronald interacts with a hypothetical PPT adversary \mathscr{A} that can win the IND-CPA game against this Bellare-Rogaway scheme with non-negligible advantage. Clearly mention: (i) the reduction objective of Ronald, (ii) how Ronald simulates encryption, (iii) how random-oracle queries are answered before and after the challenge, and (iv) how Ronald's objective is satisfied at the end of the game. (20)

Solution (i) Objective of Ronald: Ronald is supplied with a random u^* in the range of f. Ronald wants to compute $r^* = f_{td}^{-1}(u^*)$ without knowing the trapdoor.

(ii) Simulation of Encryption: \mathscr{A} supplies two different *l*-bit messages m_0, m_1 . Ronald chooses a random bit $b \in_U \{0,1\}$, and a random $v^* \in_U \{0,1\}^l$. Ronald sends to \mathscr{A} the pair $c^* = (u^*, v^*)$ as the purported encryption of m_b . Ronald's input u^* uniquely identifies r^* . In order that c^* is a valid ciphertext of m_b , we must have $G(r^*) = v^* \oplus m_b$.

Solution (iii) RO Queries: Ronald maintains a *G*-table of (Q, G(Q)) pairs queried by \mathscr{A} . Now, suppose \mathscr{A} asks Ronald to return G(Q). Ronald can verify whether $Q = r^*$ by checking whether $f(Q) = u^*$. In the pre-challenge phase, we have $Q = r^*$ only with negligible probability, because without seeing u^* the probability that \mathscr{A} makes this query is negligible.

If $Q \neq r^*$, then Ronald searches his *G*-table for *Q*. If *Q* is already present, the corresponding G(Q) value is returned. Otherwise, Ronald generates a uniformly random string $\gamma \in_U \{0,1\}^l$, adds the pair (Q,γ) to his *G*-table, and returns γ to \mathscr{A} .

So suppose that $Q = r^*$, and this can happen, except with negligible probability, in the post-challenge phase. If $G(r^*)$ is already defined, the saved value is returned. Otherwise, Ronald computes $\gamma^* = v^* \oplus m_b$, stores the pair (r^*, γ^*) in his *G*-table, and returns γ^* to \mathscr{A} .

(iv) End of Game: If $G(r^*)$ is not defined, then both the values $m_0 \oplus v^*$ and $m_1 \oplus v^*$ are equiprobable to be the value of $G(r^*)$. Consequently, without making the oracle query of $G(r^*)$, the adversary \mathscr{A} cannot have any advantage in deciding the bit *b*. But then since \mathscr{A} is supposed to have a non-negligible advantage, it would make the query $G(r^*)$ at some point in the post-challenge phase. Whenever it does, Ronald sees $f(r^*) = u^*$, and his objective of inverting f on u^* is fulfilled.

Solution Let $c^* = (u^*, v^*)$ be the challenge ciphertext presented by the oracle as an encryption of m_b . But then, for any random *l*-bit string ρ , $c' = (u^*, v^* \oplus \rho)$ is an encryption of $m_b \oplus \rho$. Since $c' \neq c^*$ (if ρ is non-zero), a decryption query on c' is allowed in the post-challenge phase. If m' is returned, then $m_b = m' \oplus \rho$.

(d) We apply the Fujisaki–Okamoto transform to convert this Bellare–Rogaway scheme to an IND-CCA2 secure scheme. Explain how encryption and decryption work after the application of the FO transform. (10)

Solution Let $l = l_0 + l_1$. We now encrypt an l_0 -bit message *m* padded by an l_1 -bit random salt *s*. We need to use a second hash function *H* from $\{0, 1\}^l$ to the domain of *f*. So the steps during encryption are as follows.

1. Choose $s \in_U \{0, 1\}^{l_1}$.

2. Compute r = H(m || s).

3. Compute u = f(r) and $v = (m || s) \oplus G(r)$.

4. Output the ciphertext (u, v).

For decrypting (u, v), we proceed as follows.

- 1. Use the trapdoor to compute $r = f_{td}^{-1}(u)$.
- 2. Compute $\mu = v \oplus G(r)$.
- 3. If $r \neq H(\mu)$, return *failure*.
- 4. Decompose $\mu = m \mid |s|$ with $|m| = l_0$ and $|s| = l_1$.
- 5. Return *m*.