CS60088 Foundations of Cryptography, Spring 2014-2015
Mid-Semester Test
18—-February—2015 CSE-107, 2:00-4:00pm Maximum marks: 35

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precisew@lquestions].
. Let n = pq be an RSA modulus (with suitably large primpsand ), ande andd the encryption and
decryption keys of a party.

(a) Letme Z, be a message. Prove that there exists a positive inkegjarh that thd-fold encryption of
mgivesmitself, that is,m® = m (modn). (5)

Solution Sincem, m® mez, mez, ... (modp) belong to a finite set, there must exist positive integersd j with i < j such
) ) NG L S\ di i
thatm® = m® (modn). Thei-fold decryption of this givesn= (mé) = (meJ) =mf" (modn).

(b) Let periodicitym,e) denote the smallest positive intedgefor which e =m (modn). Prove that
periodicity(m, e) divides@(@(n)). (5)

Solution Let k = periodicity(m.e). Sincee € Z;,, Euler's theorem gives??") = 1 (mod ¢(n)), that is,me” " =

-k
m (modn). If m =m (modn), we havemf = mf® " = (mé‘) =mf “=m (modn). Proceeding in this
way, we can show thatf = m (modn), wherer = @(@(n)) remk. By definition, k is the smallest positive
integer for whichm® = m (modn). Thereforey must be zero.
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(c) Inthis part, assume thatandq are safe primes, that ip,= 2p’ +1 andq = 2d + 1 for some primes
p’ andq. Assume further that an oracle exists that, upon the inpunef Z, ande € pr(n)f returns

periodicity(m,e). Demonstrate how this oracle can be used to fawtor probabilistic polynomial time
(without the knowledge o). (5)

Solution We invoke the oracle on several messageand encryption exponents We must choose all encryption
exponents coprime to@(n) = 4p'q. Randomly chosen odd values @fire expected to be coprime ¢gn)
with very high probability. Each invocation of the oracléumas a divisor ofp(@(n)). After a few iterations,
we expect that the Icm of these divisors equge(n)). Notice that@(@(n))| = |n| — 2, so it is easy to detect
wheng(@(n)) is computed.

We now have two equations jpi andq'. First, we have
n=pq=(2p'+1)(29 +1).

Second, we have(n) = (p—1)(g— 1) = 4p'd, that s,
@(e(n) =2(p' - 1)(d - 1).

Solving these two equations revealsandg’ and subsequently andq too.

(Remark: A single invocation of the oracle can never reveglp(n)). As in Part (b), we can prove that
periodicity(m, e) divides orgy, (e), andg(n) being equal to pd, the grouﬁz*w(m is not cyclic.)
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2. This exercise deals with a variant of EIGamal signatures.plle¢ a suitably large prime with a primitive
rootg (that is,g is a generator of;), and let the private and public keys of Alice handy, respectively
(so we havey = g* (modp)). In order to sign a messagec Zp_1, Alice choose €y Zp_1, and computes
r = g¢ (modp) ands= xr + km (modp— 1). Alice’s signature omis the pair(r,s).

(@) Show how the signaturg,s) on mcan be verified. (5)

Solution For a valid signature, we hagg = (g°)' (g*)™ = y'r™ (mod p). Therefore, the verifier accepts the signature if
and only if the congruencg® = y'r™ (mod p) holds.

(b) Show how these modified EIGamal signatures can be existentially forged. (5)

Solution The forger chooses an= gy’ (mod p) for someu € Zp_1 andv € Ly 1. Verification requires the congruence
g° =¥y (g'y")™ (modp) be satisfied. So the forger can tadke um (modp— 1), andr +vm=0 (modp— 1),
that is, the forger first computes= —rv—! (modp— 1), and then obtains= um= —urv—* (modp— 1).
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3. Let p= 3 (mod 8§ be a suitably large prime, argla generator of.;. Assume that there exists an oracle
which, upon the input ok € Zj, returns the third least significant b of x = Iogga = (X _1---X3X2X1X0)2
(wherex e {0,1,2,...,p—2}). We now design a polynomial-time algorithm to compute discrete logarithms
in Z, to the base by invoking this oracle multiple times.

(@) Suppose that we want to compute- logga = (X -1...XsX2X1%0)2. EXplain howxo can be computed. (2)

Solution We compute the Legendre symt(o%). If (%) = +1, thenxg = 0. If (%) = —1, thenxg = 1.

(b) Explain howx; can be computed by invoking the third-least-significant-bit oracle once. )

Solution Multiplying a by g*~© lets us assume, without loss of generality, tkat= 1. We invoke the third-least-
significant-bit oracle, supplying® (modp) as input. Lety = Iogg(az). We claim that the third least significant
bit of yis x;.
If X< (p—1)/2, theny=2x= (X _1...X3%2X110)2, SOX is the third least significant bit of If x> (p—1)/2,
theny =2x— (p—1) = (X_1...X3%X110)2 — (...010)2 = (...x100)2, that is, x; is again the third least
significant bit ofy.

(Remark: If p=7(mod 8§, we takexg =0.)

(c) Explain how each of;, i > 2, can be computed by invoking the third-least-significant-bit oracle or{6g.

Solution For computing, i > 2, assume thato, X, ..., X_1 are available. Takb = ag—0~24-2%—~2 21 (modp).
We have logb= (x_1...%00...0)2. Sincep= 3 (mod 4, every quadratic residue ifj, has two square-roots,
one of which is again a quadratic residue, and the other argti@athon-residue. We successively take square
root of b exactlyi — 2 times. On each occasion, we take that square root whichusdrgtic residue modulo
p (this square root can be easily identified by a Legendre-sy#iculation). This eventually gives ase Zj,
with z= indygc = (x—1...%00)2. Querying the third-least-significant-bit oracle, witlas input, gives us;.
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