CS60088 Foundations of Cryptography, Spring 2014–2015

Mid-Semester Test

Maximum marks: 35

Roll no: _____ Name: _

[Write your answers in the question paper itself. Be brief and precise. Answer <u>all</u> questions.]

1. Let n = pq be an RSA modulus (with suitably large primes p and q), and e and d the encryption and decryption keys of a party.

(a) Let $m \in \mathbb{Z}_n$ be a message. Prove that there exists a positive integer k such that the k-fold encryption of m gives m itself, that is, $m^{e^k} \equiv m \pmod{n}$. (5)

Solution Since $m, m^e, m^{e^2}, m^{e^3}, \dots \pmod{p}$ belong to a finite set, there must exist positive integers *i* and *j* with i < j such that $m^{e^i} \equiv m^{e^j} \pmod{n}$. The *i*-fold decryption of this gives $m \equiv \left(m^{e^i}\right)^{d^i} \equiv \left(m^{e^j}\right)^{d^i} \equiv m^{e^{j-i}} \pmod{n}$.

(b) Let periodicity(m,e) denote the smallest positive integer k for which $m^{e^k} \equiv m \pmod{n}$. Prove that periodicity(m,e) divides $\phi(\phi(n))$. (5)

Solution Let k = periodicity(m, e). Since $e \in \mathbb{Z}_{\phi(n)}^*$, Euler's theorem gives $e^{\phi(\phi(n))} \equiv 1 \pmod{\phi(n)}$, that is, $m^{e^{\phi(\phi(n))}} \equiv m \pmod{n}$. If $m^{e^l} \equiv m \pmod{n}$, we have $m^{e^l} \equiv m^{e^k e^{l-k}} \equiv \left(m^{e^k}\right)^{e^{l-k}} \equiv m^{e^{l-k}} \equiv m \pmod{n}$. Proceeding in this way, we can show that $m^{e^r} \equiv m \pmod{n}$, where $r = \phi(\phi(n)) \operatorname{rem} k$. By definition, k is the smallest positive integer for which $m^{e^k} \equiv m \pmod{n}$. Therefore, r must be zero.

(c) In this part, assume that p and q are safe primes, that is, p = 2p' + 1 and q = 2q' + 1 for some primes p' and q'. Assume further that an oracle exists that, upon the input of $m \in \mathbb{Z}_n$ and $e \in \mathbb{Z}_{\phi(n)}^*$, returns periodicity(m, e). Demonstrate how this oracle can be used to factor n in probabilistic polynomial time (without the knowledge of d). (5)

Solution We invoke the oracle on several messages *m* and encryption exponents *e*. We must choose all encryption exponents *e* coprime to $\phi(n) = 4p'q'$. Randomly chosen odd values of *e* are expected to be coprime to $\phi(n)$ with very high probability. Each invocation of the oracle returns a divisor of $\phi(\phi(n))$. After a few iterations, we expect that the lcm of these divisors equals $\phi(\phi(n))$. Notice that $|\phi(\phi(n))| = |n| - 2$, so it is easy to detect when $\phi(\phi(n))$ is computed.

We now have two equations in p' and q'. First, we have

$$n = pq = (2p'+1)(2q'+1).$$

Second, we have $\phi(n) = (p-1)(q-1) = 4p'q'$, that is,

$$\phi(\phi(n)) = 2(p'-1)(q'-1).$$

Solving these two equations reveals p' and q' and subsequently p and q too.

(**Remark:** A single invocation of the oracle can never reveal $\phi(\phi(n))$. As in Part (b), we can prove that periodicity(m, e) divides $\operatorname{ord}_{\phi(n)}(e)$, and $\phi(n)$ being equal to 4p'q', the group $\mathbb{Z}^*_{\phi(n)}$ is not cyclic.)

- 2. This exercise deals with a variant of ElGamal signatures. Let *p* be a suitably large prime with a primitive root *g* (that is, *g* is a generator of \mathbb{Z}_p^*), and let the private and public keys of Alice be *x* and *y*, respectively (so we have $y \equiv g^x \pmod{p}$). In order to sign a message $m \in \mathbb{Z}_{p-1}$, Alice chooses $k \in_U \mathbb{Z}_{p-1}$, and computes $r \equiv g^k \pmod{p}$ and $s \equiv xr + km \pmod{p-1}$. Alice's signature on *m* is the pair (*r*, *s*).
 - (a) Show how the signature (r, s) on *m* can be verified.

Solution For a valid signature, we have $g^s \equiv (g^x)^r (g^k)^m \equiv y^r r^m \pmod{p}$. Therefore, the verifier accepts the signature if and only if the congruence $g^s \equiv y^r r^m \pmod{p}$ holds.

(b) Show how these modified ElGamal signatures can be existentially forged.

(5)

Solution The forger chooses an $r \equiv g^{u}y^{v} \pmod{p}$ for some $u \in \mathbb{Z}_{p-1}$ and $v \in \mathbb{Z}_{p-1}^{*}$. Verification requires the congruence $g^{s} \equiv y^{r}(g^{u}y^{v})^{m} \pmod{p}$ be satisfied. So the forger can take $s \equiv um \pmod{p-1}$, and $r + vm \equiv 0 \pmod{p-1}$, that is, the forger first computes $m \equiv -rv^{-1} \pmod{p-1}$, and then obtains $s \equiv um \equiv -urv^{-1} \pmod{p-1}$.

(5)

- **3.** Let $p \equiv 3 \pmod{8}$ be a suitably large prime, and *g* a generator of \mathbb{Z}_p^* . Assume that there exists an oracle which, upon the input of $a \in \mathbb{Z}_p^*$, returns the third least significant bit x_2 of $x = \log_g a = (x_{l-1} \dots x_3 x_2 x_1 x_0)_2$ (where $x \in \{0, 1, 2, \dots, p-2\}$). We now design a polynomial-time algorithm to compute discrete logarithms in \mathbb{Z}_p^* to the base *g* by invoking this oracle multiple times.
 - (a) Suppose that we want to compute $x = \log_{g} a = (x_{l-1} \dots x_3 x_2 x_1 x_0)_2$. Explain how x_0 can be computed. (2)

(3)

Solution We compute the Legendre symbol $\left(\frac{a}{p}\right)$. If $\left(\frac{a}{p}\right) = +1$, then $x_0 = 0$. If $\left(\frac{a}{p}\right) = -1$, then $x_0 = 1$.

- (b) Explain how x_1 can be computed by invoking the third-least-significant-bit oracle once.
- Solution Multiplying *a* by g^{1-x_0} lets us assume, without loss of generality, that $x_0 = 1$. We invoke the third-least-significant-bit oracle, supplying $a^2 \pmod{p}$ as input. Let $y = \log_g(a^2)$. We claim that the third least significant bit of *y* is x_1 .

If x < (p-1)/2, then $y = 2x = (x_{l-1}...x_3x_2x_110)_2$, so x_1 is the third least significant bit of y. If $x \ge (p-1)/2$, then $y = 2x - (p-1) = (x_{l-1}...x_3x_2x_110)_2 - (...010)_2 = (...x_100)_2$, that is, x_1 is again the third least significant bit of y.

(**Remark:** If $p \equiv 7 \pmod{8}$, we take $x_0 = 0$.)

(c) Explain how each of x_i , $i \ge 2$, can be computed by invoking the third-least-significant-bit oracle once. (5)

Solution For computing x_i , $i \ge 2$, assume that $x_0, x_1, \ldots, x_{i-1}$ are available. Take $b \equiv ag^{-x_0-2x_1-2^2x_2-\cdots-2^{i-1}x_{i-1}} \pmod{p}$. We have $\log_g b = (x_{l-1} \ldots x_i 00 \ldots 0)_2$. Since $p \equiv 3 \pmod{4}$, every quadratic residue in \mathbb{Z}_p^* has two square-roots, one of which is again a quadratic residue, and the other a quadratic non-residue. We successively take square root of *b* exactly i - 2 times. On each occasion, we take that square root which is a quadratic residue modulo *p* (this square root can be easily identified by a Legendre-symbol calculation). This eventually gives us $c \in \mathbb{Z}_p^*$ with $z = \operatorname{ind}_g c = (x_{l-1} \ldots x_l 00)_2$. Querying the third-least-significant-bit oracle, with *c* as input, gives us x_i .