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Mid-Semester Test
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Roll no: Name:

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

1. Let n = pq be an RSA modulus (with suitably large primesp and q), and e and d the encryption and
decryption keys of a party.

(a) Let m ∈ Zn be a message. Prove that there exists a positive integerk such that thek-fold encryption of
m givesm itself, that is,mek

≡ m (modn). (5)

Solution Sincem,me, me2
, me3

, . . . (modp) belong to a finite set, there must exist positive integersi and j with i < j such

thatmei
≡ me j

(modn). Thei-fold decryption of this givesm ≡
(

mei
)di

≡
(

me j
)di

≡ me j−i
(modn).

(b) Let periodicity(m,e) denote the smallest positive integerk for which mek
≡ m (modn). Prove that

periodicity(m,e) dividesφ(φ(n)). (5)

Solution Let k = periodicity(m,e). Sincee ∈ Z
∗
φ(n), Euler’s theorem giveseφ(φ(n)) ≡ 1 (modφ(n)), that is,meφ(φ(n))

≡

m (modn). If mel
≡ m (modn), we havemel

≡ mekel−k
≡

(

mek
)el−k

≡ mel−k
≡ m (modn). Proceeding in this

way, we can show thatmer
≡ m (modn), wherer = φ(φ(n)) remk. By definition,k is the smallest positive

integer for whichmek
≡ m (modn). Therefore,r must be zero.
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(c) In this part, assume thatp andq are safe primes, that is,p = 2p′+1 andq = 2q′+1 for some primes
p′ and q′. Assume further that an oracle exists that, upon the input ofm ∈ Zn and e ∈ Z

∗
φ(n), returns

periodicity(m,e). Demonstrate how this oracle can be used to factorn in probabilistic polynomial time
(without the knowledge ofd). (5)

Solution We invoke the oracle on several messagesm and encryption exponentse. We must choose all encryption
exponentse coprime toφ(n) = 4p′q′. Randomly chosen odd values ofe are expected to be coprime toφ(n)
with very high probability. Each invocation of the oracle returns a divisor ofφ(φ(n)). After a few iterations,
we expect that the lcm of these divisors equalsφ(φ(n)). Notice that|φ(φ(n))|= |n|−2, so it is easy to detect
whenφ(φ(n)) is computed.

We now have two equations inp′ andq′. First, we have

n = pq = (2p′+1)(2q′+1).

Second, we haveφ(n) = (p−1)(q−1) = 4p′q′, that is,

φ(φ(n)) = 2(p′−1)(q′−1).

Solving these two equations revealsp′ andq′ and subsequentlyp andq too.

(Remark: A single invocation of the oracle can never revealφ(φ(n)). As in Part (b), we can prove that
periodicity(m,e) divides ordφ(n)(e), andφ(n) being equal to 4p′q′, the groupZ∗

φ(n) is not cyclic.)
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2. This exercise deals with a variant of ElGamal signatures. Letp be a suitably large prime with a primitive
root g (that is,g is a generator ofZ∗

p), and let the private and public keys of Alice bex andy, respectively
(so we havey ≡ gx (modp)). In order to sign a messagem ∈ Zp−1, Alice choosesk ∈U Zp−1, and computes
r ≡ gk (modp) ands ≡ xr+ km (modp−1). Alice’s signature onm is the pair(r,s).

(a) Show how the signature(r,s) on m can be verified. (5)

Solution For a valid signature, we havegs ≡ (gx)r(gk)m ≡ yrrm (mod p). Therefore, the verifier accepts the signature if
and only if the congruencegs ≡ yrrm (modp) holds.

(b) Show how these modified ElGamal signatures can be existentially forged. (5)

Solution The forger chooses anr ≡ guyv (modp) for someu ∈ Zp−1 andv ∈ Z
∗
p−1. Verification requires the congruence

gs ≡ yr(guyv)m (mod p) be satisfied. So the forger can takes ≡ um (mod p−1), andr+ vm ≡ 0 (mod p−1),
that is, the forger first computesm ≡−rv−1 (modp−1), and then obtainss ≡ um ≡−urv−1 (modp−1).
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3. Let p ≡ 3 (mod 8) be a suitably large prime, andg a generator ofZ∗
p. Assume that there exists an oracle

which, upon the input ofa ∈ Z
∗
p, returns the third least significant bitx2 of x = logg a = (xl−1 . . .x3x2x1x0)2

(wherex ∈ {0,1,2, . . . , p−2}). We now design a polynomial-time algorithm to compute discrete logarithms
in Z

∗
p to the baseg by invoking this oracle multiple times.

(a) Suppose that we want to computex = logg a = (xl−1 . . .x3x2x1x0)2. Explain howx0 can be computed.(2)

Solution We compute the Legendre symbol
(

a
p

)

. If
(

a
p

)

=+1, thenx0 = 0. If
(

a
p

)

=−1, thenx0 = 1.

(b) Explain howx1 can be computed by invoking the third-least-significant-bit oracle once. (3)

Solution Multiplying a by g1−x0 lets us assume, without loss of generality, thatx0 = 1. We invoke the third-least-
significant-bit oracle, supplyinga2 (modp) as input. Lety = logg(a

2). We claim that the third least significant
bit of y is x1.

If x < (p−1)/2, theny = 2x = (xl−1 . . .x3x2x110)2, sox1 is the third least significant bit ofy. If x > (p−1)/2,
then y = 2x − (p − 1) = (xl−1 . . .x3x2x110)2 − (. . .010)2 = (. . .x100)2, that is, x1 is again the third least
significant bit ofy.

(Remark: If p ≡ 7 (mod 8), we takex0 = 0.)

(c) Explain how each ofxi, i > 2, can be computed by invoking the third-least-significant-bit oracle once.(5)

Solution For computingxi, i > 2, assume thatx0,x1, . . . ,xi−1 are available. Takeb ≡ ag−x0−2x1−22x2−···−2i−1xi−1 (modp).
We have logg b = (xl−1 . . .xi00. . .0)2. Sincep ≡ 3 (mod 4), every quadratic residue inZ∗

p has two square-roots,
one of which is again a quadratic residue, and the other a quadratic non-residue. We successively take square
root of b exactlyi−2 times. On each occasion, we take that square root which is a quadratic residue modulo
p (this square root can be easily identified by a Legendre-symbol calculation). This eventually gives usc ∈ Z

∗
p

with z = indg c = (xl−1 . . .xi00)2. Querying the third-least-significant-bit oracle, withc as input, gives usxi.
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