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[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

1. Supply brief (one-sentence) answers to the following parts. (2× 8)

(a) Under what assumption is the textbook ElGamal encryption algorithm all-or-nothing secure against
passive attacks?

Solution The computational Diffie–Hellman assumption

(b) Under what assumption is the semantically secure ElGamal encryption scheme IND-CPA secure?

Solution The decisional Diffie–Hellman assumption

(c) Let n= pqbe a product of two (large) primes. How many quadratic residues are there inZ
∗
n?

Solution φ(n)/4= (p−1)(q−1)/4

(d) What is the quadratic residuosity assumption in connection withn= pqwith large primesp,q?

Solution Given ana∈ Z
∗
n(+1), it is intractable to decide whethera is a quadratic residue modulon.

(e) For which common attack model ATK, are the notions NM-ATK and IND-ATK equivalent?

Solution CCA2

(f) What is the task of an equator in a zero-knowledge protocol?

Solution To produce a transcript statistically identical to (or computationally indistinguishable from) a transcript coming
from an actual run of the protocol.

(g) What is the use of the forking lemma?

Solution To prove the CMA security of a digital-signature scheme in the random-oracle model.

(h) What roles should be played by Simon the simulator in an IND-CCA2 proof of an encryption scheme
in the random-oracle model?

Solution To reply to hash queries, to decrypt indifferent and adaptive chosen ciphertexts, and to supply a challenge
ciphertext.
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2. Let n = pq be an RSA modulus (with suitably large primesp and q), ande and d the encryption and
decryption keys of a party. Let the message length bel0, andl0+ l1+1= |n|. We should have|n| > 1024,
andl1 = 160 to achieve the intended security. In order to encrypt a messagem∈ {0,1}l0, one first chooses
a random saltr ∈U {0,1}l1, and then padsm as µ = 0 || m || r. A ciphertext ofm is then computed as
c≡ µe (modn).

(a) Explain how decryption is done for this scheme. (5)

Solution Recover the padded messageµ by RSA decryption:µ ≡ cd (modn). If the most significant bit ofµ (treated as
an|n|-bit string) is not zero, report failure. Otherwise, writeµ = 0 || m || r with |m|= l0 and|r|= l1. Returnm.

(b) Establish that this scheme is not even IND-CPA secure. (5)

Solution We know that ifc ≡ µe (modn) and many significant bits ofµ are available, then the Fujisaki–Okamoto–
Pointcheval–Stern algorithm can efficiently compute the remaining bits ofµ . If c 6≡ µe (modn), and if many
significant bits ofµ are known, the above algorithm may encounter inconsistencyand report failure, or return a
value ofµ which does not satisfyc≡ µe (modn). In any case, one can check easily whether a reconstructedµ
is correct by checking whetherc≡ µe (modn).

In the IND-CPA game, the adversary choosesm0,m1, and receives the challenge ciphertextc∗ of mb with
b∈U {0,1} chosen by the encryption oracle. Sincem0 andm1 are known to the adversary, he runs the Fujisaki–
Okamoto–Pointcheval–Stern algorithm twice with inputsm0,c∗ andm1,c∗. One of the computations fails, and
the other (withmb,c∗ as input) recovers the salt used during encryption, and pinpoints whetherm0 or m1 was
encrypted.
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3. The Goldwasser–Micali encryption scheme encrypts a message bit by bit. If the bit length of the message is
l and the bit length of the modulus isk, then the ciphertext consists oflk bits. Blum and Goldwasser (Crypto
1984) propose a scheme which produces ciphertexts of sizel +k bits only.

Let n= pq be the product of two suitably large primes each congruent to 3 modulo 4. Thepublic key isn,
whereas the private key consists ofp andq.

Let m= m1m2 . . .ml be a message of bit lengthl , that the sender wants to encrypt. The sender first chooses
x0 ∈U Z

∗
n. (S)he then successively computesxi ≡ x2

i−1 (modn) for i = 1,2, . . . , l + 1. Let ai be the least
significant bit ofxi , anda= a1a2 . . .al . A ciphertext form is the pair(m⊕a,xl+1).

(a) Describe how a ciphertext(c,x) can be decrypted. (5)

Solution Since the recipient knows the factorization ofn (this is the private key), (s)he can efficiently compute square
roots modulon. Each ofx1,x2, . . . ,xl is a quadratic residue modulon. Sincep,q≡ 3 (mod 4), every quadratic
residue has exactly one square root which is again a quadratic residue. Therefore,xi+1 uniquely identifiesxi .
Starting fromxl+1 = x, the square rootsxl ,xl−1, . . . ,x1 are computed byl square-root computations. The mask
a is obtained by concatenating the least significant bits ofx1,x2, . . . ,xl . Finally, the message is recovered as
m= c⊕a.

(b) Prove that Blum–Goldwasser encryption is semantically secure against IND-CPA adversaries under a
suitable computational assumption. (10)

Solution Suppose that there exists an adversary which can win the IND-CPA game against the Blum–Goldwasser
cryptosystem with non-negligible advantage. The adversary takes anym∈ {0,1}l−1. During the IND-CPA
game, the adversary choosesm0 = 0 || m, andm1 = 1 || m. The oracle encryptsmb and supplies a ciphertext
(c,x) of mb. XOR-ing c with mb reveals the bitsa1,a2, . . . ,al+1. For both the ciphertextsm0 andm1, the bits
a2, . . . ,al+1 are the same. Onlya1 depends on whetherm0 or m1 is encrypted. The ability of distinguishing
m0 from m1 is then equivalent to distinguishinga1 = 0 from a1 = 1. Therefore givena2, . . . ,al (andxl+1), the
adversary can, with a non-negligible advantage, determinea1. This indicates that the BBS generator does not
pass the previous-bit test, and so is not cryptographicallysecure, a contradiction.
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(c) Is Blum–Goldwasser encryption IND-CCA2 secure? Justify. (5)

Solution No. The Blum–Goldwasser encryption is XOR-malleable. If(c, r) is a ciphertext form, then(c⊕m′, r) is a
ciphertext form⊕m′ for any bit stringm′ of the same length asm. No malleable encryption can be secure
against adaptive chosen ciphertext attacks.
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4. Alice wants to convince Bob that she can decrypt messages encrypted byan RSA public key(n,e). Let
d ≡ e−1 (modφ(n)) be the corresponding decryption key. Assume that bothp andq are safe primes, that is,
p= 2p′+1 andq= 2q′+1 for primesp′,q′. Alice must not reveald to Bob. Moreover, to avoid chosen-
ciphertext or chosen-message attacks from Bob, Alice must not produce the decryption results directly to
Bob. Alice instead uses the following protocol for the demonstration of her capability of RSA decryption
(more precisely, her knowledge ofd).

CommitmentAlice chooses a randoms∈U Zn such thats is invertible moduloφ(n). Alice sendss to Bob.
(We haveφ(n) = (p−1)(q−1) = 4p′q′, sosmust be odd and not divisible byp′ or q′.)

ChallengeBob chooses a random ciphertextC∈U Z
∗
n. Bob sendsC to Alice.

ResponseAlice decryptsC to getM ≡Cd (modn). Alice computest ≡ s−1e(modφ(n)). Finally, Alice
sends the responseR≡ Mt (modn) to Bob.

Verification Bob accepts Alice if and only ifRs ≡C (modn).

(a) Deduce the completeness probability of this protocol. (5)

Solution We havest≡ e(modφ(n)), that is,st= e+kφ(n) for some integerk. Moreover, sinceC∈ Z
∗
n, we haveM ∈ Z

∗
n

too. If Alice runs the protocol as stated above, we haveRs≡ Mst ≡ Me+kφ(n) ≡ Me(Mφ(n))k ≡ Me≡C (modn).
Thus, Bob accepts Alice. That is, the completeness probability is ε = 1.
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(b) Deduce the soundness error probability of this protocol. Assume that Alicehas only polynomially
bounded computational power. (5)

Solution Cis a valid ciphertext ofRwith respect to the decryption keys−1 ≡ td (modφ(n)). Alice’s capability of sending
the correct response is equivalent to her knowledge ofs−1, which in turn is equivalent to her knowledge of the
factorization ofn. If Alice is cheating, she does not knowd (equivalently, the factorization ofn). Consequently,
she can send a responseRwhich is correct with negligible probabilityδ .

(c) Argue that this protocol has the computational zero-knowledge property. (5)

Solution In an actual run of the protocol,s should be coprime toφ(n). But an equator does not know the factorization
of n, and cannot computeφ(n) and enforce this condition. However, sinceφ(n) = 4p′q′, the equator should
choose an odd value fors. The chance that thiss is divisible byp′ or q′ is overwhelmingly small. That is, the
equator’s choice fors is computationally indistinguishable from a choice ofsmade by Alice.

The equator also choosesR∈U Z
∗
n, and computesC≡ Rs (modn). The equated transcript iss,C,R.
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For leftover answers and rough work
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