CS60088 Foundations of Cryptography, Spring 2014-2015
End-Semester Test
22—-April-2015 CSE-107, 2:00-5:00pm Maximum marks: 60

Roll no: Name:

[ Write your answers in the question paper itself. Be brief and precisew@lquestions].

1. Supply brief (one-sentence) answers to the following parts. (2 x 8)
(& Under what assumption is the textbook ElIGamal encryption algorithm all4hingpsecure against
passive attacks?

Solution The computational Diffie—Hellman assumption
(b) Under what assumption is the semantically secure EIGamal encryption scNE¥ERA secure?

Solution The decisional Diffie—Hellman assumption
(c) Letn= pgbe a product of two (large) primes. How many quadratic residues amithef?

Solution @(n)/4=(p—1)(q—1)/4
(d) What is the quadratic residuosity assumption in connection mithpg with large primes, q?

Solution Given ana € Zy,(+1), itis intractable to decide whethaiis a quadratic residue modufo
(e) For which common attack model ATK, are the notions NM-ATK and IND-ATKipglent?

Solution CCA2

() Whatis the task of an equator in a zero-knowledge protocol?

Solution To produce a transcript statistically identical to (or cartgtionally indistinguishable from) a transcript coming
from an actual run of the protocol.

(9) What is the use of the forking lemma?
Solution To prove the CMA security of a digital-signature scheme mridindom-oracle model.

(h) What roles should be played by Simon the simulator in an IND-CCA2 prooh @reryption scheme
in the random-oracle model?

Solution To reply to hash queries, to decrypt indifferent and adaptiiosen ciphertexts, and to supply a challenge
ciphertext.
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2. Let n = pg be an RSA modulus (with suitably large primpsand g), ande andd the encryption and
decryption keys of a party. Let the message lengtlpbandlo+1; + 1 = |n|. We should havén| > 1024,
andl; = 160 to achieve the intended security. In order to encrypt a messagg0, 1}'°, one first chooses
a random salt ey {0,1}"1, and then padsnasu = 0| m|| r. A ciphertext ofm is then computed as
c= u® (modn).

(a) Explain how decryption is done for this scheme. (5)

Solution Recover the padded messagby RSA decryptiony = ¢ (modn). If the most significant bit oft (treated as
an|n|-bit string) is not zero, report failure. Otherwise, write= 0 || m|| r with |m| = lp and|r| = I1. Returnm.

(b) Establish that this scheme is not even IND-CPA secure. (5)

Solution We know that ifc = p® (modn) and many significant bits gft are available, then the Fujisaki-Okamoto-
Pointcheval-Stern algorithm can efficiently compute theaiming bits ofu. If ¢ # p® (modn), and if many
significant bits ofu are known, the above algorithm may encounter inconsistandyeport failure, or return a
value of which does not satisfg = 1€ (modn). In any case, one can check easily whether a reconstrpcted
is correct by checking whether= u€ (modn).

In the IND-CPA game, the adversary choosesny, and receives the challenge ciphertektof m, with

b ey {0,1} chosen by the encryption oracle. Simogandmy are known to the adversary, he runs the Fujisaki—
Okamoto—Pointcheval-Stern algorithm twice with inpuitsc* andmy, ¢*. One of the computations fails, and
the other (withmy, c* as input) recovers the salt used during encryption, andopitg whetheimy or my was
encrypted.
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3. The Goldwasser—Micali encryption scheme encrypts a message bit biythé.Hdit length of the message is
| and the bit length of the moduluskisthen the ciphertext consistsléfbits. Blum and Goldwasser (Crypto
1984) propose a scheme which produces ciphertexts of sikeits only.

Let n = pg be the product of two suitably large primes each congruent to 3 modulo 4pdliie key isn,
whereas the private key consistspéndg.

Letm=mn,...m be a message of bit lengththat the sender wants to encrypt. The sender first chooses
Xo €u Z. (S)he then successively computess x2 ; (modn) for i =1,2,...,1 + 1. Leta be the least
significant bit ofx;, anda=ajay...a. A ciphertext formis the pairlm® a,x 1).

(a) Describe how a ciphertext,x) can be decrypted. (5)

Solution Since the recipient knows the factorizationrofthis is the private key), (s)he can efficiently compute squa
roots modulan. Each ofx, X, ..., is a quadratic residue moduto Sincep,q= 3 (mod 4), every quadratic
residue has exactly one square root which is again a quadesidue. Thereforeg 1 uniquely identifiesx;.
Starting fromx;, 1 = X, the square rootg,x _1,...,x; are computed by square-root computations. The mask
a is obtained by concatenating the least significant bitg;0fy, ..., X% . Finally, the message is recovered as
m=cda.

(b) Prove that Blum—Goldwasser encryption is semantically secure againsE¥Dadversaries under a
suitable computational assumption. (10)

Solution Suppose that there exists an adversary which can win the GRB-game against the Blum—Goldwasser
cryptosystem with non-negligible advantage. The advgrsskes anym € {0,1}'~1. During the IND-CPA
game, the adversary chooses= 0 || m, andm; = 1 || m. The oracle encryptsy, and supplies a ciphertext
(c,x) of mp. XOR-ing ¢ with my, reveals the bitsy,ap,...,a1. For both the ciphertextsy andmy, the bits
a,...,a1 are the same. Onlyy depends on whetheng or my is encrypted. The ability of distinguishing
mp from my is then equivalent to distinguishireg = 0 froma; = 1. Therefore givemy, ..., a (andx 1), the
adversary can, with a non-negligible advantage, determind his indicates that the BBS generator does not
pass the previous-bit test, and so is not cryptographisaityire, a contradiction.
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(c) Is Blum—Goldwasser encryption IND-CCA2 secure? Justify. (5)

Solution No. The Blum—Goldwasser encryption is XOR-malleable(clf) is a ciphertext fom, then(cg m,r) is a
ciphertext form@ ' for any bit stringm’ of the same length as. No malleable encryption can be secure
against adaptive chosen ciphertext attacks.
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4. Alice wants to convince Bob that she can decrypt messages encrypted R$A public key(n,e). Let
d=e! (modg(n)) be the corresponding decryption key. Assume that Ipahdq are safe primes, that is,
p=2p' +1andq=2q + 1 for primesp’,q. Alice must not reveall to Bob. Moreover, to avoid chosen-
ciphertext or chosen-message attacks from Bob, Alice must not pedtlecdecryption results directly to

Bob. Alice instead uses the following protocol for the demonstration of &ealaility of RSA decryption
(more precisely, her knowledge d.

CommitmentAlice chooses a randosicy Z, such thas is invertible modulop(n). Alice sendssto Bob.
(We havep(n) = (p—1)(g— 1) = 4p/d, sosmust be odd and not divisible iy or q'.)
Challenge Bob chooses a random cipherté€xey Z;,. Bob send<€ to Alice.

ResponseAlice decryptsC to getM = CY (modn). Alice computes = s*e (modg(n)). Finally, Alice
sends the respong&= M' (modn) to Bob.

Verification Bob accepts Alice if and only iR® = C (modhn).

(@) Deduce the completeness probability of this protocol. )

Solution We havest= e (mod@(n)), that is,st = e+ kg(n) for some integek. Moreover, sinc€ € Z;,, we haveM € Z;;
too. If Alice runs the protocol as stated above, we Have: MSt = MeHke(n) = Me(M @MW)k = Me = C (modbn).
Thus, Bob accepts Alice. That is, the completeness prabaisile = 1.
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(b) Deduce the soundness error probability of this protocol. Assume that Bdiseonly polynomially
bounded computational power. )

Solution Cis a valid ciphertext oRwith respect to the decryption key! =td (mod@(n)). Alice’s capability of sending
the correct response is equivalent to her knowledge hfwhich in turn is equivalent to her knowledge of the
factorization ofn. If Alice is cheating, she does not knal(equivalently, the factorization ai). Consequently,
she can send a resporR&hich is correct with negligible probability.

(c) Argue that this protocol has the computational zero-knowledge property (5)

Solution In an actual run of the protocas,should be coprime tg(n). But an equator does not know the factorization
of n, and cannot comput@(n) and enforce this condition. However, singén) = 4p'q, the equator should
choose an odd value fer The chance that thisis divisible by p’ or ' is overwhelmingly small. That is, the
equator’s choice fos is computationally indistinguishable from a choicesahade by Alice.

The equator also choosBsy Zj;;, and compute€ = R® (modn). The equated transcript C, R.
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For leftover answers and rough work
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