CS60088 Foundations of Cryptography, Spring 2014–2015

Class Test

10-April-2015	6:45–7:45pm	Maximum marks: 20
Roll no:	Name:	

[Write your answers in the question paper itself. Be brief and precise. Answer <u>all</u> questions.]

- 1. Pointcheval (Eurocrypt 1999) proposes an ElGamal-like encryption algorithm based upon RSA. Let n = pq be an RSA modulus, and (e,d) a key pair under this modulus. In order to encrypt a message $m \in \mathbb{Z}_n$, one chooses a random $r \in_U \mathbb{Z}_n$, and computes $\alpha \equiv r^e \pmod{n}$ and $\beta \equiv m(r+1)^e \pmod{n}$. A ciphertext for *m* is the pair (α, β) .
 - (a) Explain how a ciphertext (α, β) can be decrypted.

(5)

Solution Using the decryption exponent, *r* is first recovered as $r \equiv \alpha^d \pmod{n}$. With overwhelmingly large probability, we have $r + 1 \in \mathbb{Z}_n^*$. So *m* is recovered as $m \equiv \beta (r+1)^{-e} \pmod{n}$.

(b) Is this encryption scheme non-malleable?

(5)

Solution No. If (α, β) is a ciphertext for *m*, then $(\alpha, 2\beta \pmod{n})$ is a ciphertext for $2m \pmod{n}$.

- **2.** Let \mathscr{E} be a public-key encryption algorithm, and \mathscr{D} the corresponding decryption algorithm. Let us design a new public-key encryption algorithm \mathscr{E}' as $\mathscr{E}'(m) = \mathscr{E}(m) || a$ for a randomly chosen bit $a \in_U \{0, 1\}$. The corresponding decryption is carried out as $\mathscr{D}'(c || a) = \mathscr{D}(c)$. Here, \mathscr{E} and \mathscr{D} respectively use the public and the private keys of an entity. Prove/Disprove the following two assertions.
 - (a) If $(\mathscr{E}, \mathscr{D})$ is IND-CCA secure, then $(\mathscr{E}', \mathscr{D}')$ is IND-CCA secure.

(5)

Solution True. We provide a reduction to contradiction. Suppose that $(\mathscr{E}', \mathscr{D}')$ is not IND-CCA secure, that is, there exists a PPT adversary A' that can win the IND-CCA game against $(\mathscr{E}', \mathscr{D}')$ with non-negligible advantage Adv. Using this algorithm, Simon (the simulator) wins the IND-CCA game against $(\mathscr{E}, \mathscr{D})$ with the same advantage Adv, contradicting that $(\mathscr{E}, \mathscr{D})$ is IND-CCA secure.

The adversary A' needs access to an oracle \mathcal{O}' for $(\mathcal{E}', \mathcal{D}')$. Simon intercepts all communication between A' and \mathcal{O}' . Simon has access to an oracle \mathcal{O} for $(\mathcal{E}, \mathcal{D})$. Using this, Simon simulates \mathcal{E}' and \mathcal{D}' .

Pre-challenge training session: The adversary A' sends a set of indifferent chosen ciphertexts $c' = c \mid\mid a$ to Simon. Simon sends c to \mathcal{O} , gets the decryption result $m = \mathcal{D}(c)$, and returns m back to A'. Since $\mathcal{D}'(c') = \mathcal{D}(c)$, Simon's simulation of decryption is perfect.

The IND-CPA game: When A' is happy with the cryptanalysis training, it sends two messages m_0, m_1 (of the same length) to Simon. Simon forwards the same messages to the oracle \mathcal{O} . The oracle chooses a random bit $b \in_U \{0,1\}$, encrypts m_b , and sends the challenge ciphertext $c^* = \mathscr{E}(m_b)$ back to Simon. Simon chooses a random bit $a \in_U \{0,1\}$, and sends $c^* || a$ back to A'. Clearly, $c^* || a$ is a valid ciphertext of m_b under the encryption algorithm \mathscr{E}' , that is, Simon's simulation of \mathscr{E}' is perfect.

End of game: After receiving the challenge ciphertext, A' unleashes its cryptanalytic prowess and outputs a bit b'. Simon outputs the same bit b'. We have b = b' with probability $\frac{1}{2} + Adv$.

Solution False. Let $c^* = c || a = \mathscr{E}'(m_b)$ be the challenge ciphertext. Then, $d^* = c || \bar{a}$ is also a ciphertext of m_b under \mathscr{E}' , where \bar{a} is the complement of the bit a. In the post-challenge phase, the adversary queries the oracle to decrypt d^* . Since $d^* \neq c^*$, this is allowed. So the oracle decrypts d^* , and reveals m_b to the adversary.

For leftover answers and rough work