CS60088 Foundations of Cryptography, Spring 2013-2014
Mid-Semester Test
19-February—2014 CSE-107, 2:00-4:00pm Maximum marks: 35

Roll no: Name:

[ Write your answers in the question paper itself. Be brief and precisew@lquestions].

. So far, we have discussed signature schewiés appendix, in which the signature is appended to the
message. In a signature schewith message recovery, only the signature is presented to the verifier. The
verification algorithm recovers the message. If the message is supposautam some redundancy (like
it is an English text), then the verification of a forged signature recoversssage which is expected with
high probability not to contain the redundancy.

Nyberg and Rueppel (Eurocrypt 1994) propose an ElGamal-like sigmaith message recovery. We work
in a finite fieldF, with an elemeng of large prime ordeq dividing p— 1. The signature on a messagés
pair (r,s) generated as follows:

r = mg (modp) for a randomly choset € Zq,
' = rremaq,
s = —l—r'x(modq).
(a) How can the messagebe recovered from the signatufes)? (5)

Solution m=rg~' = rg*"* =rg%" (modp), wherer’ =r remq.

(b) Show how existential forgery is possible for the Nyberg—Rueppelsehe )

Solution If (r,s) is a valid Nyberg—Rueppel signature on a messagaen(r,s+t) is again a Nyberg—Rueppel signature

on the messageg' (mod p) for anyt.

Moreover, if we start with any arbitrary signatuires), the message-recovery algorithm outputsresn which
(r,s) is a valid signature.
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2. Sakurai and Takagi (2001) propose a semantically secure RSA-litgmion scheme. Their scheme is
based upon earlier works by Paillier (Eurocrypt 1999) and by Catal@eanaro, Howgrave-Graham and
Nguyen (CCS 2001). A modulus= pqg is chosen with suitably large primgsq. The public key of Alice
is (n and) ane (usually small for efficiency) coprime tg(n), and her private key id = e~ (mod @(n)).
The encryption involves arithmetic modué. For a message € Zy, a uniformly randont € Z? is chosen,
and the ciphertext is computed @s: ré(1+ mn) (modn?).

(@) Prove that for every € Z,, there exist unique € Z; andm € Zp such that = r®(1+mn) (modr?). (5)

Solution Consider the functiorf : Zj x Zn — Z, that maps(r,m) to ¢ = r®(1+ mn) (mod n?). We show thatf is a
bijection. Letc = f(r,m) = f(p, ). Modulon, we haver® = p® = ¢ (modn). Exponentiation to thel-th
power givesr = p = ¢ (modn). But bothr andp are fromZ, sor = p. This in turn implies thatn = y,
that is, the functionf is injective. Since both the domain and the rangef dfave the same size, namely
o(n?) = p(p—1)q(q— 1) = ng(n), we conclude thaf is a bijection.
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(b) Explain how decryption is carried out in the Sakurai—Takagi scheme. (5)

Solution Alice first recovers by RSA decryption. The ciphertextreduced modulm is r€ (modn). Its d-th power
exponentiation i = r (modn). Then,r®is computed module?. But gcdr,n) = 1, sor€is invertible modulo
n? too, andmis retrieved agc(r®)~! — 1 (modn?)) /n.

(c) Demonstrate that the Sakurai—Takagi scheme is not secure agairst-ghjoisertext attacks. (5)

Solution Sakurai—Takagi encryption is additively homomorphic. Blpreciselyf (r,m)f(p,m) = f(rp,m+u). In order
to decrypt a target ciphertegtcorresponding to the plaintext messageMValice multipliesc by the ciphertext
¢’ = f(p,u) for randomly chosep and. But then,cc’ is a random element &,, so Alice decryptec’ to
reveal the message-+ n' to Malice. Sincen’ was chosen by Malice, he obtains the target plaintext
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(d) Prove that Sakurai—Takagi encryption is all-or-nothing secure agaassive attacks if and only if the
RSA assumption holds. )

Solution If the RSA assumption does not hold, Malice (a passive eawppér in the part) can computgmodn) by
RSA decryption of 9. He then recovermas in Part (b).

Conversely, suppose that there is an oracle ST that, upoimphe of c € Z,, returns the plaintextn (with

non-negligible advantage). This in turn implies th&t= ¢(1+ mn)~* (modn?) can be computed easily. Let us
see how this oracle can be used to solve the RSA problem.

Let c=r® (modn) be the challenge RSA ciphertext that Malice wants to decrislice queries the oracle
ST with ¢ (treated as an element @f’;) as input. Letc = f(p,u) (see Part (a)). Malice then computes
A = p® (modn?) as mentioned in the last paragraph. Sineer® = p® (modn), andr, p € Z¢, we haver = p,
that is, Malice has computed= r® (modn?). Indeed, Malice could have sent any ciphertext of the forrkn

to the oracle to compute this.

Malice then makes a second query to the oracle ST, this tirtteof2° (modn) (again treated as an element of
Z;,) as input. This enables Malice to compute= (r')® (modn?), wherer’ = r/2 (modn).

If r is even, we have =r/2, so ZA’ = A (modn?). If nis odd, ther’ = (r +n)/2 so that 2A’ = (r +n)® =
ré+er®!n (modn?) (by the binomial theorem). By constructicar® ! € Z¢, thatis, A’ # A (modn?). This
means that by checking whether the congruerfaé 2 A (modn?) holds, Malice can decide the LSB nfthat
is, the RSA parity oracle exists. This in turn implies thag BRSA assumption does not hold.
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(e) The (decisionale-th power residuosity problem is the determination of whethexk anz-, can be
expressed as= r® (modn?) for somer € Z*. Prove that Sakurai—Takagi encryption is semantically secure
(that is, IND-CPA secure) if and only if theeth power residuosity problem is intractable. (5)

Solution First, suppose that a decider (an oracle) forafe power residuosity problem exists. Using this, Malica ca
win the IND-CPA game as follows. Malice chooseg = 0 andm; = 1. We havecg = r§ (modn?) and
c1 =r§(1+n) (modn?) for somerg,r1 € Z;;. Clearly,co is ane-th power residue. 1&; = r§ (modn?) for some
ro € Zj, thency = f(r1,1) = f(r2,0), a contradiction to the bijectivity of (see Part (a)). Thereforey not an
e-th power residue. Thus, the decider for thth power residuosity problem straightaway reveals to tdsihe
random choice betweeary andc; made by Alice’s encryption oracle, that is, Sakurai—Tala@agiryption is not
semantically secure.

Conversely, suppose that Sakurai—Takagi encryption iseroantically secure, that is, an oracle ST-CPA exists
that, givenmg, my, c*, reveals to Malice (with non-negligible advantage) whetfieomes frommg or frommy.
Using this oracle, the-th power residuosity problem can be solved as follows.

Suppose that we want to decide whethey, Z, is ane-th power residue or not. For randomly chosam
(of the same length), we query ST-CPA witly, my,c* = z(1+ mn)(modn?) as input. 1fz=r® (modn?) is
ane-th power residue, thea® = f(r,m;), and ST-CPA responds by outputting the bit 1 (with non-rggigle
advantage). On the other handzifs not ane-th power residue, then= ré(1+4 mn) for somer € Z; and
m € Z, with m = 0 (recall that the functiorf is a bijection). But then¢* = z(1+ myn) is an encryption of
my -+ m (modn). Now, m# 0, som = my. Moreover, for a randorg, we havem= my — my (modn) with only
negligible probability. Therefores™ is the encryption of neitharg nor my. In this case, ST-CPA may report
failure or outputs 0 or 1 randomly.

In both the cases, if ST-CPA outputs 0 or 1, we output the samé BT-CPA outputs failure, then we output
0. This gives us a Monte-Carlo-type randomized algorithsaiwe thee-th power residuosity problem.
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