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[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

1. So far, we have discussed signature schemeswith appendix, in which the signature is appended to the
message. In a signature schemewith message recovery, only the signature is presented to the verifier. The
verification algorithm recovers the message. If the message is supposed tocontain some redundancy (like
it is an English text), then the verification of a forged signature recovers amessage which is expected with
high probability not to contain the redundancy.

Nyberg and Rueppel (Eurocrypt 1994) propose an ElGamal-like signature with message recovery. We work
in a finite fieldFp with an elementg of large prime orderq dividing p−1. The signature on a messagem is
pair (r,s) generated as follows:

r ≡ mgl (modp) for a randomly chosenl ∈ Zq,

r′ = r rem q,

s ≡ −l − r′x (modq).

(a) How can the messagem be recovered from the signature(r,s)? (5)

Solution m ≡ rg−l ≡ rgs+r′x ≡ rgsyr′ (modp), wherer′ = r rem q.

(b) Show how existential forgery is possible for the Nyberg–Rueppel scheme. (5)

Solution If (r,s) is a valid Nyberg–Rueppel signature on a messagem, then(r,s+ t) is again a Nyberg–Rueppel signature
on the messagemgt (modp) for anyt.

Moreover, if we start with any arbitrary signature(r,s), the message-recovery algorithm outputs anm on which
(r,s) is a valid signature.
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2. Sakurai and Takagi (2001) propose a semantically secure RSA-like encryption scheme. Their scheme is
based upon earlier works by Paillier (Eurocrypt 1999) and by Catalano, Gennaro, Howgrave-Graham and
Nguyen (CCS 2001). A modulusn = pq is chosen with suitably large primesp,q. The public key of Alice
is (n and) ane (usually small for efficiency) coprime toφ(n), and her private key isd ≡ e−1 (modφ(n)).
The encryption involves arithmetic modulon2. For a messagem ∈ Zn, a uniformly randomr ∈ Z

∗
n is chosen,

and the ciphertext is computed asc ≡ re(1+mn) (modn2).

(a) Prove that for everyc ∈ Z
∗
n2, there exist uniquer ∈ Z

∗
n andm ∈ Zn such thatc ≡ re(1+mn) (modn2). (5)

Solution Consider the functionf : Z∗
n ×Zn → Z

∗
n2 that maps(r,m) to c ≡ re(1+mn) (modn2). We show thatf is a

bijection. Letc = f (r,m) = f (ρ ,µ). Modulo n, we havere ≡ ρe ≡ c (modn). Exponentiation to thed-th
power givesr ≡ ρ ≡ cd (modn). But bothr andρ are fromZ

∗
n, so r = ρ . This in turn implies thatm = µ ,

that is, the functionf is injective. Since both the domain and the range off have the same size, namely
φ(n2) = p(p−1)q(q−1) = nφ(n), we conclude thatf is a bijection.
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(b) Explain how decryption is carried out in the Sakurai–Takagi scheme. (5)

Solution Alice first recoversr by RSA decryption. The ciphertextc reduced modulon is re (modn). Its d-th power
exponentiation iscd ≡ r (modn). Then,re is computed modulon2. But gcd(r,n) = 1, sore is invertible modulo
n2 too, andm is retrieved as

(

c(re)−1−1 (modn2)
)

/n.

(c) Demonstrate that the Sakurai–Takagi scheme is not secure against chosen-ciphertext attacks. (5)

Solution Sakurai–Takagi encryption is additively homomorphic. More precisely,f (r,m) f (ρ ,m)= f (rρ ,m+µ). In order
to decrypt a target ciphertextc corresponding to the plaintext messagem, Malice multipliesc by the ciphertext
c′ = f (ρ ,µ) for randomly chosenρ andµ . But then,cc′ is a random element ofZ∗

n2, so Alice decryptscc′ to
reveal the messagem+m′ to Malice. Sincem′ was chosen by Malice, he obtains the target plaintextm.
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(d) Prove that Sakurai–Takagi encryption is all-or-nothing secure against passive attacks if and only if the
RSA assumption holds. (5)

Solution If the RSA assumption does not hold, Malice (a passive eavesdropper in the part) can computer (modn) by
RSA decryption ofrd . He then recoversm as in Part (b).

Conversely, suppose that there is an oracle ST that, upon theinput of c ∈ Z
∗
n2, returns the plaintextm (with

non-negligible advantage). This in turn implies thatre ≡ c(1+mn)−1 (modn2) can be computed easily. Let us
see how this oracle can be used to solve the RSA problem.

Let c ≡ re (modn) be the challenge RSA ciphertext that Malice wants to decrypt. Malice queries the oracle
ST with c (treated as an element ofZ∗

n2) as input. Letc = f (ρ ,µ) (see Part (a)). Malice then computes
λ ≡ ρe (modn2) as mentioned in the last paragraph. Sincec ≡ re ≡ ρe (modn), andr,ρ ∈ Z

∗
n, we haver = ρ ,

that is, Malice has computedλ ≡ re (modn2). Indeed, Malice could have sent any ciphertext of the formc+kn
to the oracle to compute thisλ .

Malice then makes a second query to the oracle ST, this time with c/2e (modn) (again treated as an element of
Z
∗
n2) as input. This enables Malice to computeλ ′ ≡ (r′)e (modn2), wherer′ ≡ r/2 (modn).

If r is even, we haver′ = r/2, so 2eλ ′ ≡ λ (modn2). If n is odd, thenr′ = (r+n)/2 so that 2eλ ′ ≡ (r+n)e ≡

re + ere−1n (modn2) (by the binomial theorem). By construction,ere−1 ∈ Z
∗
n, that is, 2eλ ′ 6≡ λ (modn2). This

means that by checking whether the congruence 2eλ ′ ≡ λ (modn2) holds, Malice can decide the LSB ofr, that
is, the RSA parity oracle exists. This in turn implies that the RSA assumption does not hold.

— Page 4 of 8 —



(e) The (decisional)e-th power residuosity problem is the determination of whether anx ∈ Z
∗
n2 can be

expressed asx ≡ re (modn2) for somer ∈ Z
∗
n. Prove that Sakurai–Takagi encryption is semantically secure

(that is, IND-CPA secure) if and only if thee-th power residuosity problem is intractable. (5)

Solution First, suppose that a decider (an oracle) for thee-th power residuosity problem exists. Using this, Malice can
win the IND-CPA game as follows. Malice choosesm0 = 0 andm1 = 1. We havec0 ≡ re

0 (modn2) and
c1 ≡ re

1(1+n) (modn2) for somer0,r1 ∈ Z
∗
n. Clearly,c0 is ane-th power residue. Ifc1 ≡ re

2 (modn2) for some
r2 ∈ Z

∗
n, thenc1 = f (r1,1) = f (r2,0), a contradiction to the bijectivity off (see Part (a)). Therefore,c1 not an

e-th power residue. Thus, the decider for thee-th power residuosity problem straightaway reveals to Malice the
random choice betweenc0 andc1 made by Alice’s encryption oracle, that is, Sakurai–Takagiencryption is not
semantically secure.

Conversely, suppose that Sakurai–Takagi encryption is notsemantically secure, that is, an oracle ST-CPA exists
that, givenm0,m1,c∗, reveals to Malice (with non-negligible advantage) whether c∗ comes fromm0 or fromm1.
Using this oracle, thee-th power residuosity problem can be solved as follows.

Suppose that we want to decide whetherz ∈U Z
∗
n2 is ane-th power residue or not. For randomly chosenm0,m1

(of the same length), we query ST-CPA withm0,m1,c∗ ≡ z(1+m1n)(modn2) as input. Ifz ≡ re (modn2) is
an e-th power residue, thenc∗ = f (r,m1), and ST-CPA responds by outputting the bit 1 (with non-negligible
advantage). On the other hand, ifz is not ane-th power residue, thenz ≡ re(1+mn) for somer ∈ Z

∗
n and

m ∈ Zn with m 6= 0 (recall that the functionf is a bijection). But then,c∗ = z(1+m1n) is an encryption of
m1+m (modn). Now, m 6= 0, som 6= m1. Moreover, for a randomz, we havem ≡ m0−m1 (modn) with only
negligible probability. Therefore,c∗ is the encryption of neitherm0 nor m1. In this case, ST-CPA may report
failure or outputs 0 or 1 randomly.

In both the cases, if ST-CPA outputs 0 or 1, we output the same bit. If ST-CPA outputs failure, then we output
0. This gives us a Monte-Carlo-type randomized algorithm tosolve thee-th power residuosity problem.
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