CS60088 Foundations of Cryptography, Spring 2013-2014
End-Semester Test
23-April-2014 CSE-119 & 120, 2:00-5:00pm Maximum marks: 60

Roll no: Name:

[ Write your answers in the question paper itself. Be brief and precisew@lquestions].

1. Let p= 3 (mod 4) be a cryptographically large prime, aga generator of;. We have discussed two bit-
level oracles for computing discrete logarithmsZifi The half-order oracle(HOO), givena € Zy, returns
0 or 1 according as whether the discrete logarithmy@nid < (p—1)/2 or > (p—1)/2, respectively. The
second least significant bit orac{8LSBO), givera € Zj, returns the second least significant bit ofgad
These two oracles are essentially equivalent to one another. Of ctluesexistence of any one of these
oracles implies that discrete logarithms can be efficiently computég.ifrrom the discrete logarithm, the
other oracle can be trivially designed. But the computation of a discreteittogainvolves about logp
invocations of the oracle used. For simulating one oracle by the other,maockar better. More precisely,
given the oracle HOO, design the oracle SLSBO which makégsonequery to HOO, and conversely. (10)

2X if x<(p—1)/2,
2x—(p—-1) ifx=(p-1)/2.
p = 3 (mod 4, the second least significant bit gf— 1 is 1. Consequently, SLBx(mod p— 1)) =

LSB(x) if HO(x) =0, . .
{Complement of LSB) i HO(x) = 1. Therefore, the simulations proceed as follows.

Solution Let x = indga. Then, ing(a?) = 2x (mod p— 1), that is, in¢(a?) = { Since

Simulation of SLSBO by HOO

1. Determineb = LSB(x) by computing the Legendre symbég).

2. If b= 1, replacea by ag~* (modp).

3. Compute the two square roatsr of aas+alPt1/4 (modp).

4. By making a query to HOO (on orry), determine which one is therrectsquare root of a
(thatis,r € {ry,r2} with indgr = 1indga, thatis, ingr < (p—1)/2).

5. Determined’ = LSB(indqr) by computing the Legendre symb()%).
6. Returnb'.

Simulation of HOO by SLSBO

1. Determineéb = LSB(x) by computing the Legendre symbég).

2. Make an oracle query to gbt= SLSBQp,g,a?(modp)).
3. If b=, return 0, else return 1.
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2. [Pointcheval transforin Pointcheval (PKC 2000) proposes a generic construction to coavene-way
trapdoor function to an IND-CCA2-secure encryption algorithm. LetZ” x # — % be an injective one-
way function. It is intractable, givency 2, to computex € 2" andy € ¢ such thatf (x,y) = z. However,
if a trapdoor is available, one can efficiently obtain, fram 2, anx € 2" such thatz = f(x,y) for some
y € % . We denote this bytgl(z) = X. We call such arf apartially invertible one-way trapdoor function

Letme {0,1}% be the message to be encrypted. ketkg -+ k; for somek; with 1/2% negligible. We have
two hash function#l : {0,1}% — # andG: 2" — {0,1}X. We choose €, 2" ands ey {0,1}X. We then
computecy; = f(r,H(m|| s)) andc, = (m|| s) & G(r). The ciphertext fomis ¢ = (c1,Cz).

(a) Demonstrate how decryption is carried out using the functjph (5)

Solution The decryption ofcy, ) proceeds as follows.

1. Use the trapdoor to compute= f3*(c1).

2. Computan’ = ¢, & G(r).

3. If f(r,H(m')) = ¢4, return the firskg bits of n,
else returrfailure.

(b) Now, assume that there exists a PPT algoritiithat can win the IND-CCA2 game with non-
negligible probability, without knowing the trapdoor. Using this, we desigsttear PPT algorithm (Simon
the simulator). The goal of Simon is to partially invert a challenge outpdit dfiat is, to compute* from

z' = f(x*,y") ey Z. Explain how Simon simulateS andH oracle queries during thiind stage (that is,
beforemy, my are supplied to Simon hy). (5)

Solution In the find stage, Simon sends uniformly random outputs fa&a@ndH queries.

For a quenyG(r), Simon first checks whether the p&irG(r)) is already present in his-table. If so, the stored
value of G(r) is returned. If not, a bit strin@, €y {0,1}¥ is chosen, the paifr,G;) is added to the&s-table,
andG; is returned tow asG(r).

For a queryH ('), Simon first checks whethém'| = k. If not, Simon notifiese that the query is invalid.
For a valid query, Simon checks wheth@n,H(n')) already resides in hisl-table. If so, the storeé (n7)
is returned. Otherwise, a randdryy €y ¢ is chosen, the pain',H,y) is added to théd-table, andH,y is
returned toeZ asH (n).
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(c) Explain how Simon simulates a decryption query. (5)

Solution Suppose that a decryption query f@i, c2) comes to Simon, in the find stage or in the guess stage. We have
(c1,C2) # ¢* (with high probability in the find stage and as a rule in thesgustage, where* is defined in
Part (d)). Simon consults hid andG tables to find out whether there exigtandr such that (m') andG(r)
are definede; = f(r,H(m)), andG(r) = c, ¢ m'. If so, the firstky bits of m' are returned am. If not, the
ciphertext is declared as invalid. There exists a chandevadal ciphertexts are declared as invalid, but the

probability of that happening is negligibly low.

(d) After the initial find stage,” supplies two plaintext messages, m; € {0,1}%. Simon selects a
randomb € {0, 1}, setsc; = z*, chooses; cy {0,1}%, and sends* = (c;, c;) as the purported encryption
of m,. Notice thatx* is uniquely determined by . Simon chooses ai € {0, 1}% such that* corresponds
to the encryption ofn, with r = x* ands= s*. What constraints does this impose on GandH values? (5)

Solution In order thatc* is a valid encryption ofn,, we should have the following constraints.

1. H(my || ") = y*, wherez" = f(x*,y").
2. G(x) =@ (my || ).

3. H(my || s*) is undefined at this point.
4. G(x*) is undefined at this point.

Conditions (1) and (2) follow from the encryption algorith@ondition 3 can be enforced everHfquery exists
on thismy—Simon only needs to choose ahfor which H(my, || s) is not queried. Condition 4 is extremely
probable, since without seeig = z*, the probability ofe” having made the quei@(x*) is negligible.

Take-home challenge:Complete the rest of the proof.
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3. Consider ElGamal encryption i, Let g be an element of;, of suitably large ordeq. Let< be the
subgroup ofZ;, generated bg. An EIGamal key pair consists of the private kegy Zq and the public key
y=g‘(modp). Encryption ofm e Zj proceeds as follows. Forcy Zq, one computea = d (modp) and
b= my (modp). The encryption ofmis the pair(a,b).

(@) Present EIGamal encryption as a partially invertible one-way trapdootifum (5)

Solution We havef(m,1) = (a,b) withme 2" =Z;, | € # =Zq, and(a,b) € 2" =9 x Z;. We have¥ = Zq, and the
function f : 2" x % — % is a bijection. The knowledge of the private kewllows the recipient to partially
invert f, that is, to recovem.

(b) Apply the Pointcheval transform of Exercise 2 on EIGamal encryption. (5)

Solution Takekg = |p| — 1, andk = kg + k; for somek; > 160. As.2", we use the subset @,- consisting of alko-bit
strings. But then, the image of" x ¢ is not the full of¢ x Zj,, but this is not a big issue, since the restriction

of f continues to remain injective. We use two hash functiéng0, 1} — % = Zq andG: {0,1}% — {0,1}*.
In order to encrypt &o-bit messagen, we choose <y {0,1}% andsey {0,1}*¢. We compute:

I = H(mls),
g (modp),
g'r (modp),
(m|['s) & G(r).

O T 9
Il

The ciphertext ofnis the triple(a, b, c).
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4. [Feige—Fiat-ShamifFFS) protocol This is a round-efficient version of the Fiat-Shamir protocol. A
composite modulus = pg with suitably large primep,q = 3 (mod 4 are chosen. Aften is constructed,
its factorization is no longer needed and can be forgotten. A small integelso chosen. Alice’s private
input consists of elements«y, Xp,...,% €u Z;. The common input consists afandy, s, ...,Y:, where
yi = (—1)Ax? (modn) with B €y {0,1}, foralli =1,2,...,t.

During a run of the protocol, Alice computes and sends to Bob the commitmerit-1)'k? (modn) for
k ey ) andy €y {0,1}. Bob’s challenge consists ohits by, by, ..., b each uniformly randomly chosen
t

from {0,1}. The response of Alice to Bob is=k ['] x (modn).

bj=1

(a) Explain the verification step of Bob. (5)

t
Solution Squaring the equation faorgives the verification conditiorf = +c [ vi (modn).

bj=1

(b) Deduce the completeness and soundness-error probabilities for thadétb&ol. (5)

Solution If Alice knows the secrek, Xz, ..., X%, she can definitely generate the correct response, so thpletemess
probability is 1. For deducing the soundness-error prdibgbive assume that Alice does not know one or more
of x3,X2,...,%. The right side of the verification congruence is fixed afterchallenge phase. Moreover, since
Alice cannot change the commitment after seeing the ctgdleproducing a correct responses intractable
under the SQRT assumption. However, Alice can guess thdpits, ..., bx correctly with probability ¥2'.
Thus, the soundness error probability 21
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(c) Prove that a simulator not knowing,Xo,...,% can generate FFS transcripts having the identical
probability distribution as transcripts from real runs of the protocol. 5)

Solution The following steps are performed by the simulator (eqyator

1. Generate a responsey Z;,.

2. Generate a random bit vectdn, by, ..., b) €y {0,1}!.
t

3. Generate the commitmentas: (—1)"r? [ y; * (modn) with y €y {0,1}.

bj=1

4. Output the transcrigt, (by, b, ... bt),r.

It is straightforward to argue that this simulated trarschias the same probability distribution as a transcript
generated by an actual interaction between Alice and Bob.

(d) Suppose that there exists a probabilistic polynomial time cheating prover itfaiuwknowing one or
more ofxy, %o, . .., %, can be accepted by Bob with non-negligible probability. Provedf&2') successful
sessions help the cheating prover to knowxalalues with high probability. Argue why one can take
t = O(log, log, n) but not larger. (5)

Solution After O(2'/2) random successful sessions with the same commitroemte expect to have, with high
probability, two transcripts, (b1, by,...,b),r andc, (b}, b, ....bf),r" with the bit vectors(by,by,...,b) and
(by,b5,.... k) differing in exactly one position, say, theth position. Suppose théf = 1 andbj = 0. The
verification equations in the two sessions then give’)? = +y; (modn), that is,r /r’ = £x; (modn). Here,
we could assume different commitment values if the cheatimyer knows the correspondirkgvalues, but
since we treat the cheating prover as a black box, this is redsonable assumption.

It follows thatO(t2!) successful runs of the FFS protocol reveal all the seggets, . .., % to the cheating prover
with high probability. Ift = O(log,log, n), then this reduction is probabilistic polynomial time (ogh), that
is, the zero-knowledge-ness of the protocol is PPT equivatethe knowledge of1,Xo,...,%. Larger values
of t make the reduction super-polynomial time, and the protow} lose its zero-knowledge property.
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