
CS60088 Foundations of Cryptography, Spring 2013–2014

End-Semester Test

23–April–2014 CSE-119 & 120, 2:00–5:00pm Maximum marks: 60

Roll no: Name:

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

1. Let p≡ 3 (mod 4) be a cryptographically large prime, andg a generator ofZ∗
p. We have discussed two bit-

level oracles for computing discrete logarithms inZ
∗
p. Thehalf-order oracle(HOO), givena∈ Z

∗
p, returns

0 or 1 according as whether the discrete logarithm indga is < (p−1)/2 or> (p−1)/2, respectively. The
second least significant bit oracle(SLSBO), givena∈ Z

∗
p, returns the second least significant bit of indga.

These two oracles are essentially equivalent to one another. Of course, the existence of any one of these
oracles implies that discrete logarithms can be efficiently computed inZ

∗
p. From the discrete logarithm, the

other oracle can be trivially designed. But the computation of a discrete logarithm involves about log2 p
invocations of the oracle used. For simulating one oracle by the other, we can do far better. More precisely,
given the oracle HOO, design the oracle SLSBO which makesonly onequery to HOO, and conversely. (10)

Solution Let x = indga. Then, indg(a2) ≡ 2x (mod p−1), that is, indg(a2) =

{

2x if x< (p−1)/2,
2x− (p−1) if x> (p−1)/2.

Since

p ≡ 3 (mod 4), the second least significant bit ofp− 1 is 1. Consequently, SLSB(2x(mod p− 1)) =
{

LSB(x) if HO(x) = 0,
Complement of LSB(x) if HO(x) = 1.

Therefore, the simulations proceed as follows.

Simulation of SLSBO by HOO

1. Determineb= LSB(x) by computing the Legendre symbol
(

a
p

)

.

2. If b= 1, replacea by ag−1 (modp).
3. Compute the two square rootsr1, r2 of a as±a(p+1)/4 (modp).
4. By making a query to HOO (onr1 or r2), determine which one is thecorrectsquare rootr of a

(that is,r ∈ {r1, r2} with indg r = 1
2 indga, that is, indg r < (p−1)/2).

5. Determineb′ = LSB(indg r) by computing the Legendre symbol
(

r
p

)

.

6. Returnb′.

Simulation of HOO by SLSBO

1. Determineb= LSB(x) by computing the Legendre symbol
(

a
p

)

.

2. Make an oracle query to getb′ = SLSBO(p,g,a2(modp)).
3. If b= b′, return 0, else return 1.

— Page 1 of 10 —

2. [Pointcheval transform] Pointcheval (PKC 2000) proposes a generic construction to converta one-way
trapdoor function to an IND-CCA2-secure encryption algorithm. Letf : X ×Y → Z be an injective one-
way function. It is intractable, givenz∈U Z , to computex∈ X andy∈ Y such thatf (x,y) = z. However,
if a trapdoor is available, one can efficiently obtain, fromz∈ Z , anx∈ X such thatz= f (x,y) for some
y∈ Y . We denote this byf−1

td (z) = x. We call such anf apartially invertible one-way trapdoor function.

Let m∈ {0,1}k0 be the message to be encrypted. Letk= k0+k1 for somek1 with 1/2k1 negligible. We have
two hash functionsH : {0,1}k → Y andG : X → {0,1}k. We chooser ∈U X ands∈U {0,1}k1. We then
computec1 = f (r,H(m || s)) andc2 = (m || s)⊕G(r). The ciphertext form is c= (c1,c2).

(a) Demonstrate how decryption is carried out using the functionf−1
td . (5)

Solution The decryption of(c1,c2) proceeds as follows.

1. Use the trapdoor to computer = f−1
td (c1).

2. Computem′ = c2⊕G(r).
3. If f (r,H(m′)) = c1, return the firstk0 bits ofm′,

else returnfailure.

(b) Now, assume that there exists a PPT algorithmA that can win the IND-CCA2 game with non-
negligible probability, without knowing the trapdoor. Using this, we design another PPT algorithm (Simon
the simulator). The goal of Simon is to partially invert a challenge output off , that is, to computex∗ from
z∗ = f (x∗,y∗) ∈U Z . Explain how Simon simulatesG andH oracle queries during thefind stage (that is,
beforem0,m1 are supplied to Simon byA). (5)

Solution In the find stage, Simon sends uniformly random outputs for all G andH queries.

For a queryG(r), Simon first checks whether the pair(r,G(r)) is already present in hisG-table. If so, the stored
value ofG(r) is returned. If not, a bit stringGr ∈U {0,1}k is chosen, the pair(r,Gr) is added to theG-table,
andGr is returned toA asG(r).

For a queryH(m′), Simon first checks whether|m′| = k. If not, Simon notifiesA that the query is invalid.
For a valid query, Simon checks whether(m′,H(m′)) already resides in hisH-table. If so, the storedH(m′)
is returned. Otherwise, a randomHm′ ∈U Y is chosen, the pair(m′,Hm′) is added to theH-table, andHm′ is
returned toA asH(m′).

— Page 2 of 10 —

(c) Explain how Simon simulates a decryption query. (5)

Solution Suppose that a decryption query for(c1,c2) comes to Simon, in the find stage or in the guess stage. We have
(c1,c2) 6= c∗ (with high probability in the find stage and as a rule in the guess stage, wherec∗ is defined in
Part (d)). Simon consults hisH andG tables to find out whether there existm′ andr such thatH(m′) andG(r)
are defined,c1 = f (r,H(m′)), andG(r) = c2⊕m′. If so, the firstk0 bits of m′ are returned asm. If not, the
ciphertext is declared as invalid. There exists a chance that valid ciphertexts are declared as invalid, but the
probability of that happening is negligibly low.

(d) After the initial find stage,A supplies two plaintext messagesm0,m1 ∈ {0,1}k0. Simon selects a
randomb∈U {0,1}, setsc∗1 = z∗, choosesc∗2 ∈U {0,1}k, and sendsc∗ = (c∗1,c

∗
2) as the purported encryption

of mb. Notice thatx∗ is uniquely determined byz∗. Simon chooses ans∗ ∈U {0,1}k1 such thatc∗ corresponds
to the encryption ofmb with r = x∗ ands= s∗. What constraints does this impose on theG andH values? (5)

Solution In order thatc∗ is a valid encryption ofmb, we should have the following constraints.

1. H(mb || s∗) = y∗, wherez∗ = f (x∗,y∗).
2. G(x∗) = c∗2⊕ (mb || s∗).
3. H(mb || s∗) is undefined at this point.
4. G(x∗) is undefined at this point.

Conditions (1) and (2) follow from the encryption algorithm. Condition 3 can be enforced even ifH query exists
on thismb—Simon only needs to choose ans∗ for which H(mb || s∗) is not queried. Condition 4 is extremely
probable, since without seeingc∗1 = z∗, the probability ofA having made the queryG(x∗) is negligible.

Take-home challenge:Complete the rest of the proof.

— Page 3 of 10 —

3. Consider ElGamal encryption inZ∗
p. Let g be an element ofZ∗

p of suitably large orderq. Let G be the
subgroup ofZ∗

p generated byg. An ElGamal key pair consists of the private keyx∈U Zq and the public key
y≡ gx (modp). Encryption ofm∈ Z

∗
p proceeds as follows. Forl ∈U Zq, one computesa≡ gl (modp) and

b≡ myl (modp). The encryption ofm is the pair(a,b).

(a) Present ElGamal encryption as a partially invertible one-way trapdoor function. (5)

Solution We havef (m, l) = (a,b) with m∈ X = Z
∗
p, l ∈ Y = Zq, and(a,b) ∈ Z = G ×Z

∗
p. We haveG ∼= Zq, and the

function f : X ×Y → Z is a bijection. The knowledge of the private keyx allows the recipient to partially
invert f , that is, to recoverm.

(b) Apply the Pointcheval transform of Exercise 2 on ElGamal encryption. (5)

Solution Takek0 = |p|−1, andk= k0+k1 for somek1 > 160. AsX , we use the subset ofZp∗ consisting of allk0-bit
strings. But then, the image ofX ×Y is not the full ofG ×Z

∗
p, but this is not a big issue, since the restriction

of f continues to remain injective. We use two hash functionsH : {0,1}k →Y =Zq andG : {0,1}k0 →{0,1}k.
In order to encrypt ak0-bit messagem, we chooser ∈U {0,1}k0 ands∈U {0,1}k1. We compute:

l = H(m || s),

a ≡ gl (modp),

b ≡ gl r (modp),

c = (m || s)⊕G(r).

The ciphertext ofm is the triple(a,b,c).

— Page 4 of 10 —

4. [Feige–Fiat–Shamir(FFS) protocol] This is a round-efficient version of the Fiat–Shamir protocol. A
composite modulusn= pq with suitably large primesp,q≡ 3 (mod 4) are chosen. Aftern is constructed,
its factorization is no longer needed and can be forgotten. A small integert is also chosen. Alice’s private
input consists oft elementsx1,x2, . . . ,xt ∈U Z

∗
n. The common input consists ofn andy1,y2, . . . ,yt , where

yi ≡ (−1)βi x2
i (modn) with βi ∈U {0,1}, for all i = 1,2, . . . , t.

During a run of the protocol, Alice computes and sends to Bob the commitmentc≡ (−1)γk2 (modn) for
k ∈U Z

∗
n andγ ∈U {0,1}. Bob’s challenge consists oft bits b1,b2, . . . ,bt each uniformly randomly chosen

from {0,1}. The response of Alice to Bob isr ≡ k
t

∏
i=1

bi=1

xi (modn).

(a) Explain the verification step of Bob. (5)

Solution Squaring the equation forr gives the verification conditionr2 ≡±c
t

∏
i=1

bi=1

yi (modn).

(b) Deduce the completeness and soundness-error probabilities for the FFSprotocol. (5)

Solution If Alice knows the secretx1,x2, . . . ,xt , she can definitely generate the correct response, so the completeness
probability is 1. For deducing the soundness-error probability, we assume that Alice does not know one or more
of x1,x2, . . . ,xt . The right side of the verification congruence is fixed after the challenge phase. Moreover, since
Alice cannot change the commitment after seeing the challenge, producing a correct responser is intractable
under the SQRT assumption. However, Alice can guess the bitsb1,b2, . . . ,bt correctly with probability 1/2t .
Thus, the soundness error probability is 1/2t .

— Page 5 of 10 —

(c) Prove that a simulator not knowingx1,x2, . . . ,xt can generate FFS transcripts having the identical
probability distribution as transcripts from real runs of the protocol. (5)

Solution The following steps are performed by the simulator (equator):

1. Generate a responser ∈U Z
∗
n.

2. Generate a random bit vector(b1,b2, . . . ,bt) ∈U {0,1}t .

3. Generate the commitment asc≡ (−1)γ r2
t

∏
i=1

bi=1

y−1
i (modn) with γ ∈U {0,1}.

4. Output the transcriptc,(b1,b2, . . . ,bt), r.

It is straightforward to argue that this simulated transcript has the same probability distribution as a transcript
generated by an actual interaction between Alice and Bob.

(d) Suppose that there exists a probabilistic polynomial time cheating prover that, without knowing one or
more ofx1,x2, . . . ,xt , can be accepted by Bob with non-negligible probability. Prove thatO(t2t) successful
sessions help the cheating prover to know allxi values with high probability. Argue why one can take
t = O(log2 log2n) but not larger. (5)

Solution After O(2t/2) random successful sessions with the same commitmentc, we expect to have, with high
probability, two transcriptsc,(b1,b2, . . . ,bt), r andc,(b′1,b

′
2, . . . ,b

′
t), r

′ with the bit vectors(b1,b2, . . . ,bt) and
(b′1,b

′
2, . . . ,b

′
t) differing in exactly one position, say, thej-th position. Suppose thatb j = 1 andb′j = 0. The

verification equations in the two sessions then give(r/r ′)2 ≡ ±y j (modn), that is,r/r ′ ≡ ±x j (modn). Here,
we could assume different commitment values if the cheatingprover knows the correspondingk values, but
since we treat the cheating prover as a black box, this is not areasonable assumption.

It follows thatO(t2t) successful runs of the FFS protocol reveal all the secretsx1,x2, . . . ,xt to the cheating prover
with high probability. Ift = O(log2 log2n), then this reduction is probabilistic polynomial time (in logn), that
is, the zero-knowledge-ness of the protocol is PPT equivalent to the knowledge ofx1,x2, . . . ,xt . Larger values
of t make the reduction super-polynomial time, and the protocolmay lose its zero-knowledge property.

— Page 6 of 10 —

For leftover answers and rough work

— Page 7 of 10 —

For leftover answers and rough work

— Page 8 of 10 —

For leftover answers and rough work

— Page 9 of 10 —

For leftover answers and rough work

— Page 10 of 10 —

