Mid-semester examination

	Total marks: 60	September 19, 2005	Duration: 2 hours
		[Answer any five questions]	
1. Consider the language			
	$L_1 = \{\alpha \in \{a, b, c\}^*$	the last two symbols of α are different}.	
	(a) Write a regular express	sion which generates the language L_1 .	(6)
	(b) Design an NFA with fr	ve states to recognize L_1 .	(6)
2.	. Let L be a regular language and n a pumping lemma constant for L. Clearly, any integer $\ge n$ can also be		

2. Let L be a regular language and n a pumping lemma constant for L. Clearly, any integer $\ge n$ can also be used as a pumping lemma constant for L. The smallest positive integer which is a pumping lemma constant for L is called the *minimum pumping lemma constant* for L. Determine the minimum pumping lemma constant for L. Determine the minimum pumping lemma constants for the languages over $\{a, b\}^*$ defined by the following regular expressions.

(a)
$$(ab) \cup (ba)$$
. (6)

(b)
$$((ab) \cup (ba))^*$$
. (6)

3. Let $\alpha = a_1 a_2 \dots a_n$ be a string of length n. A string β is called a prefix of α if $\beta = a_1 a_2 \dots a_i$ for some $i \in \{0, 1, 2, \dots, n\}$ (the case i = 0 corresponds to $\beta = \epsilon$). Consider the language

 $L_3 = \{ \alpha \in \{a, b\}^* \mid \text{ no prefix of } \alpha \text{ contains less } a \text{'s than } b \text{'s} \}.$

- (a) Design a PDA to recognize L_3 . (6)
- (b) Design a CFG G with $\mathcal{L}(G) = L_3$. (6)
- 4. Consider the language

 $L_4 = \{ \alpha \in \{a, b\}^* \mid |\alpha| = n^2 \text{ for some integer } n \ge 0 \},\$

where $|\alpha|$ denotes the length of α .

- (a) Prove that L_4 is not context-free.
- (b) Prove that the complement $\overline{L_4} = \{a, b\}^* \setminus L_4$ is also not context-free. (6)

(6)

5. Let G be the context-free grammar $G = (\{S\}, \{a, b\}, S, R)$ with R consisting of the following rules:

$$S \rightarrow \epsilon \mid aS \mid aSb$$
.
(a) Prove that G is ambiguous.
(b) Provide an unambiguous grammar for $\mathcal{L}(G)$.
(6)

- 6. (a) Let L and L' be context-free languages. Demonstrate by an example that the language $L \setminus L'$ is not necessarily context-free. (6)
 - (b) Prove that if L is a context-free language and R a regular language, then $L \setminus R$ is context-free. (6)