1. Consider the language

 $L_1 = \{ \alpha \in \{a, b, c\}^* \mid \text{ the last two symbols of } \alpha \text{ are different} \}.$

(a) Write a regular expression which generates the language L_1 .

 $Solution \ \ (a\cup b\cup c)^*((ab)\cup (ac)\cup (bc)\cup (ba)\cup (ca)\cup (cb)).$

(b) Design an NFA with five states to recognize L_1 .

Solution

- **2.** Let *L* be a regular language and *n* a pumping lemma constant for *L*. Clearly, any integer $\ge n$ can also be used as a pumping lemma constant for *L*. The smallest positive integer which is a pumping lemma constant for *L* is called the *minimum pumping lemma constant* for *L*. Determine the minimum pumping lemma constants for the languages over $\{a, b\}^*$ defined by the following regular expressions.
 - (a) $(ab) \cup (ba)$.

Solution This language is finite. So there must not be any non-trivial pumping, i.e., the pumping lemma must be vacuously true. For that we require the minimum pumping lemma constant to be 3 (just larger than the lengths of all the strings in the language).

(b) $((ab) \cup (ba))^*$.

Solution The minimum pumping lemma constant in this case is 2. Given any string α of length ≥ 2 in this language, we can pump the first two symbols any number of times. Moreover, pumping (in/out) a string of length 1 once (or any odd number of times) does not leave the string in the language.

- **3.** Let $\alpha = a_1 a_2 \dots a_n$ be a string of length n. A string β is called a prefix of α if $\beta = a_1 a_2 \dots a_i$ for some $i \in \{0, 1, 2, \dots, n\}$ (the case i = 0 corresponds to $\beta = \epsilon$). Consider the language
 - $L_3 = \{ \alpha \in \{a, b\}^* \mid \text{ no prefix of } \alpha \text{ contains less } a \text{ 's than } b \text{ 's} \}.$
 - (a) Design a PDA to recognize L_3 .

Solution

(b) Design a CFG G with $\mathcal{L}(G) = L_3$.

Solution Imagine a as a left parenthesis and b as a right parenthesis. Then strings of L_3 can be obtained from strings of balanced parentheses after dropping zero or more right parentheses. So the following rules generate L_3 :

$$S \to \epsilon \mid aSb \mid aS \mid SS.$$

4. Consider the language

 $L_4 = \{ \alpha \in \{a, b\}^* \mid |\alpha| = n^2 \text{ for some integer } n \ge 0 \},\$

where $|\alpha|$ denotes the length of α .

(a) Prove that L_4 is not context-free.

Solution Assume that L_4 is context-free, and let n be a PL constant for L_4 . Take $\alpha = a^{n^2}$. The PL gives us a decomposition $\alpha = \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5$ with $0 < |\alpha_2 \alpha_4| = k \le n$ and with $\alpha' = \alpha_1 \alpha_2^2 \alpha_3 \alpha_4^2 \alpha_5 \in L_4$. But $n^2 < |\alpha'| = n^2 + k < (n+1)^2$, a contradiction.

(b) Prove that the complement $\overline{L_4} = \{a, b\}^* \setminus L_4$ is also not context-free.

Solution Again assume that $\overline{L_4}$ is context-free, and let n be a PL constant for $\overline{L_4}$. Assume $n \ge 2$, so that n! is not a perfect square. Take $\alpha = a^{n!}$. The PL gives a decomposition $\alpha = \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5$ with $0 < |\alpha_2 \alpha_4| = k \le n$ and with $\beta_r = \alpha_1 \alpha_2^r \alpha_3 \alpha_4^r \alpha_5 \in \overline{L_4}$ for all $r \in \mathbb{N}_0$. Since $k \le n, n!$ is a multiple of k, i.e., $s = [(n!)^2 - (n!)]/k$ is an integer. Taking r = s + 1 implies that $\overline{L_4}$ contains a string of length $(n!)^2$, a contradiction.

5. Let G be the context-free grammar $G = (\{S\}, \{a, b\}, S, R)$ with R consisting of the following rules:

 $S \to \epsilon \mid aS \mid aSb \,.$

(a) Prove that G is ambiguous.

Solution The following figure shows two different parse trees for the string aab.

(b) Provide an unambiguous grammar for $\mathcal{L}(G)$.

Solution

 $\begin{array}{rcl} S & \to & aSb \mid T & & [\text{first generate the matching } a\text{'s and } b\text{'s}] \\ T & \to & aT \mid \epsilon & & [\text{then generate the excess } a\text{'s}] \end{array}$

6. (a) Let L and L' be context-free languages. Demonstrate by an example that the language $L \setminus L'$ is not necessarily context-free.

Solution Let $\Sigma = \{a, b\}$. Take $L = \Sigma^*$. L is regular (generated by the regular expression $(a \cup b)^*$) and so context-free. Finally, take L' to be the complement of the language $\{\alpha \alpha \mid \alpha \in \{a, b\}^*\}$.

(b) Prove that if L is a context-free language and R a regular language, then $L \setminus R$ is context-free.

Solution $L \setminus R = L \cap \overline{R}$. R is regular and so closed under complementation, i.e., \overline{R} is regular too. Let P be a PDA recognizing \overline{L} and D a DFA recognizing R. We run P and D in parallel and use a single stack to be used by P. Thus the set of states of the PDA for $L \cap \overline{R}$ will be $Q_P \times Q_D$. There is only a small problem here: P allows ϵ transitions, whereas D does not. In order to cope up with this difficulty, we augment the transition function of D by $\delta_D(q, \epsilon) = q$ for all states q of D. The remaining details are easy and left to the students.