
CS30053 Foundations of Computing, Autumn 2005
Mid-semester examination : Solutions

1. Consider the language

L1 = {α ∈ {a, b, c}∗ | the last two symbols of α are different}.

(a) Write a regular expression which generates the language L1.

Solution (a ∪ b ∪ c)∗((ab) ∪ (ac) ∪ (bc) ∪ (ba) ∪ (ca) ∪ (cb)).

(b) Design an NFA with five states to recognize L1.

Solution

c

a

b

b,c

a,c

a,b

a,b,c

2. Let L be a regular language and n a pumping lemma constant for L. Clearly, any integer > n can also be used as a
pumping lemma constant for L. The smallest positive integer which is a pumping lemma constant for L is called the
minimum pumping lemma constant for L. Determine the minimum pumping lemma constants for the languages over
{a, b}∗ defined by the following regular expressions.

(a) (ab) ∪ (ba).

Solution This language is finite. So there must not be any non-trivial pumping, i.e., the pumping lemma
must be vacuously true. For that we require the minimum pumping lemma constant to be 3 (just larger
than the lengths of all the strings in the language).

(b) ((ab) ∪ (ba))∗.

Solution The minimum pumping lemma constant in this case is 2. Given any string α of length> 2 in
this language, we can pump the first two symbols any number of times. Moreover, pumping (in/out) a
string of length 1 once (or any odd number of times) does not leave the string in the language.

3. Let α = a1a2 . . . an be a string of length n. A string β is called a prefix of α if β = a1a2 . . . ai for some
i ∈ {0, 1, 2, . . . , n} (the case i = 0 corresponds to β = ε). Consider the language

L3 = {α ∈ {a, b}∗ | no prefix of α contains less a’s than b’s}.

(a) Design a PDA to recognize L3.

Solution

a,
b,u

ε u
ε ε, u ε

ε,ε ε

(b) Design a CFG G with L(G) = L3.

Solution Imagine a as a left parenthesis and b as a right parenthesis. Then strings of L3 can be obtained
from strings of balanced parentheses after dropping zero or more right parentheses. So the following
rules generate L3:

S → ε | aSb | aS | SS.

1

4. Consider the language

L4 = {α ∈ {a, b}∗ | |α| = n2 for some integer n > 0},

where |α| denotes the length of α.

(a) Prove that L4 is not context-free.

Solution Assume that L4 is context-free, and let n be a PL constant for L4. Take α = an
2

. The PL gives
us a decomposition α = α1α2α3α4α5 with 0 < |α2α4| = k 6 n and with α′ = α1α

2
2α3α

2
4α5 ∈ L4.

But n2 < |α′| = n2 + k < (n+ 1)2, a contradiction.

(b) Prove that the complement L4 = {a, b}∗ \ L4 is also not context-free.

Solution Again assume that L4 is context-free, and let n be a PL constant for L4. Assume n > 2, so
that n! is not a perfect square. Take α = an!. The PL gives a decomposition α = α1α2α3α4α5 with
0 < |α2α4| = k 6 n and with βr = α1α

r
2α3α

r
4α5 ∈ L4 for all r ∈ N0. Since k 6 n, n! is a multiple

of k, i.e., s = [(n!)2− (n!)]/k is an integer. Taking r = s+ 1 implies that L4 contains a string of length
(n!)2, a contradiction.

5. Let G be the context-free grammar G = ({S}, {a, b}, S,R) with R consisting of the following rules:

S → ε | aS | aSb .

(a) Prove that G is ambiguous.

Solution The following figure shows two different parse trees for the string aab.

bSa

S

S

ε

S

S

Sa b

ε

a

a

(b) Provide an unambiguous grammar for L(G).

Solution

S → aSb | T [first generate the matching a’s and b’s]
T → aT | ε [then generate the excess a’s]

6. (a) Let L and L′ be context-free languages. Demonstrate by an example that the language L \ L′ is not necessarily
context-free.

Solution Let Σ = {a, b}. Take L = Σ∗. L is regular (generated by the regular expression (a ∪ b)∗) and
so context-free. Finally, take L′ to be the complement of the language {αα | α ∈ {a, b}∗}.

(b) Prove that if L is a context-free language and R a regular language, then L \R is context-free.

Solution L \R = L ∩ R̄. R is regular and so closed under complementation, i.e., R̄ is regular too. Let
P be a PDA recognizing L̄ and D a DFA recognizing R. We run P and D in parallel and use a single
stack to be used by P . Thus the set of states of the PDA for L ∩ R̄ will be QP × QD. There is only a
small problem here: P allows ε transitions, whereas D does not. In order to cope up with this difficulty,
we augment the transition function of D by δD(q, ε) = q for all states q of D. The remaining details are
easy and left to the students.

Dr. Abhijit Das, Dept. of Computer Science & Engineering, IIT Kharagpur, India

2

