CS30053 Foundations of Computing, Autumn 2005

End-semester examination

	Total marks: 100	November 23, 2005	Duration: 3 hours	
	[Answer <u>all</u> questions]			
1.	. Prove that the following languages are not regular.			(10×2)
	(a) $L_{11} = \{a^m b^n \mid m, n > 0 \text{ and } gcd(m, n) = 1\} \subseteq \{a, b\}^*.$			
	(b) $L_{12} = \{a^m b^n \mid m, n > 0 \text{ and } \gcd(n)\}$	$n,n)>1\}\subseteq \{a,b\}^*.$		
2.	2. Let $\Sigma = \{a, b, c, d\}$. Consider the language			
	$L_2 = \{a^i b^j c^k d^l \mid i, j, k, l \geqslant 0 \text{ and } i$	$i+j=k+l\}\subseteq \Sigma^*.$		
	(a) Design a context-free grammar G wi	ith $\mathcal{L}(G) = L_2$.		(10)
	(b) Design a PDA to recognize L_2 .			(10)
3.	Prove that the following languages are dealers	cidable. Provide only high-level desc	criptions of deciders.	(5×5)
	(a) $A_{DFA,n} = \{ \langle D, n \rangle \mid D \text{ is a DFA that accepts some string of length } n \}.$			
	(b) SUBSET _{DFA} = { $\langle D_1, D_2 \rangle \mid D_1, D_2$ are DFA with $\mathcal{L}(D_1) \subseteq \mathcal{L}(D_2)$ }. (Hint: Look at $\mathcal{L}(D_1) \setminus \mathcal{L}(D_2)$.)			
	(c) FINITE _{PDA} = { $\langle P \rangle$ P is a PDA with $\mathcal{L}(P)$ finite}. (Hint: Let n be a pumping lemma constant for $\mathcal{L}(P)$. First prove that $\mathcal{L}(P)$ is infinite if and only if $\mathcal{L}(P)$ contains a string of length between n and $2n - 1$.)			
	(d) MOVE _{TM,α} = { $\langle M, \alpha \rangle \mid M$ is a TM	l that makes at least ten moves on inp	put α }.	
	(e) MOVE _{TM,n} = { $\langle M, n \rangle M$ is a TM (Hint: First argue that it suffices to restrict	that makes at least n moves on some tattention only to input strings of least	e input}. $agth \leq n.$)	
4.	4. Consider the language			
	$L_4 = \{ \langle M \rangle \mid M \text{ is a TM which hal} \}$	lts on the input 01011}.		
	Prove the following assertions:			
	(a) L_4 is Turing-recognizable.			(5)
	(b) L_4 is not Turing-decidable.			(5)
	(c) $\overline{L_4}$ is not Turing-recognizable.			(5)
5.	Consider the language			
	$L_5 = \{ \langle M \rangle \mid M \text{ is a TM which halts on every input} \}.$			
	(a) Use a reduction from $\overline{L_4}$ to L_5 to pro (Hint: Suppose that $\langle M \rangle$ maps to $\langle M' \rangle$ un where <i>n</i> is the length of the input string for	ove that L_5 is not Turing-recognizable order the reduction. Let M' simulate M'	e. M on input 01011 for n steps,	(10)
	(b) Use a reduction from $\overline{L_4}$ to $\overline{L_5}$ to pro-	ove that $\overline{L_5}$ is also not Turing-recogn	izable.	(10)