
CS30053 Foundations of Computing, Autumn 2005
End-semester examination : Solutions

1. Prove that the following languages are not regular.

(a) L11 = {ambn | m,n > 0 and gcd(m,n) = 1} ⊆ {a, b}∗.

Solution Let L11 be regular. Take any prime p such that p is at least two more than a pumping lemma
constant for L11. Consider the string α = apb(p−1)! ∈ L11. The pumping lemma gives a decomposition of
α of the form α1α2α3 with |α1α2| 6 p − 2, 1 6 |α2| 6 p − 2 and α1α

k
2α3 ∈ L11 for all k ∈ N0. Let

r = |α2|. Since the length of α1α2 is no more than the pumping lemma constant, it follows that α2 consists
of a’s only. Take k = 0, i.e., α1α3 = ap−rb(p−1)! ∈ L11. By the choice of p we have 2 6 p − r 6 p − 1
and so gcd((p− r), (p− 1)!) = p− r > 2, a contradiction to the definition of L11.

(b) L12 = {ambn | m,n > 0 and gcd(m,n) > 1} ⊆ {a, b}∗.

Solution One can invoke the pumping lemma independently to prove that L12 is not regular. Here is an
easier proof. Consider the language

L1 = {ambn | m,n > 0}.

L1 is the language of the regular expression aa∗bb∗ and so is regular. Also L1 is the disjoint union of L11

and L12, that is, L11 = L1 \ L12 = L1 ∩ L12. If L12 were regular, so also would be L11, since regular
languages are closed under complementation and intersection. But we have already proved in Part (a) that
L11 is not regular. So L12 cannot be regular.

2. Let Σ = {a, b, c, d}. Consider the language

L2 = {aibjckdl | i, j, k, l > 0 and i+ j = k + l} ⊆ Σ∗.

(a) Design a context-free grammar G with L(G) = L2.

Solution Let S be the start variable. We first generate matching a’s and d’s. This step is repeated min(i, l)
times. Next we branch based on the condition whether i 6 l or i > l. If i 6 l, then a’s are exhausted
earlier than d’s. So the remaining d’s are to be matched against b’s. After that we have to match the
leftover b’s with the c’s. If i > l, the d’s are exhausted first and the leftover a’s are to be matched against
c’s. After all a’s are taken care of, the remaining c’s are matched against the b’s. Thus the grammar
G = ({S,U, V,W}, {a, b}, R, S) generates L2, where R consists of the following productions:

S → aSd | U | V
U → bUd |W
V → aV c |W
W → bWc | ε

Here the variable U corresponds to the case i 6 l, and V to the case i > l. In both these cases, the final
matching of b’s against c’s is handled by the variable W .

(b) Design a PDA to recognize L2.

Solution We can use the CFG-to-PDA conversion procedure for constructing a PDA to recognize L2. Let
me instead design a PDA from the first principles. The PDA first reads a’s and then the b’s and keeps track

1

of the total count of a’s and b’s read. Then it reads runs of c’s and d’s and matches the stored count against
the total count of c’s and d’s. If the input string is not in the correct format (for example, when a b follows
an a), the machine goes to the stuck position. Moreover, the jumps between runs of a’s and b’s, of b’s and
c’s and of c’s and d’s are effected by ε-transitions. The following figure describes the PDA. Here the symbol
x, y/z means read x from the input and replace y at the top of the stack by z. Each of x, y, z is allowed to
be empty (ε).

a,ε /u

ε ε, /ε ε ε, /ε ε ε, /ε

c,u /ε

ε

b,ε /u

,ε /z

,u /εd

ε,z /ε

3. Prove that the following languages are decidable. Provide only high-level descriptions of deciders.

(a) ADFA,n = {〈D,n〉 | D is a DFA that accepts some string of length n}.

Solution Simulate D one-by-one on all strings of length n. Since ADFA is decidable and since there are
only finitely many (|Σ|n) strings of length n, the simulation ends after a finite amount of time. If the DFA
accepts any of these strings, accept. If the DFA rejects all strings of length n, reject.

(b) SUBSETDFA = {〈D1, D2〉 | D1, D2 are DFA with L(D1) ⊆ L(D2)}. (Hint: Look atL(D1)\L(D2).)

Solution We have L(D1) ⊆ L(D2) if and only if L(D1) \ L(D2) = L(D1) ∩ L(D2) = ∅. Given D1, D2,
a DFA D can be constructed to recognize L(D1) ∩ L(D2) (recall that regular languages are closed under
complementation and intersection). Then feed the description of the DFA D to a decider for EDFA.

(c) FINITEPDA = {〈P 〉 | P is a PDA with L(P) finite}. (Hint: Let n be a pumping lemma constant for
L(P). First prove that L(P) is infinite if and only if L(P) contains a string of length between n and 2n−1.)

Solution Let P be a PDA, L = L(P), and n a pumping lemma constant for L. If L contains a string α of
length > n, then the pumping lemma on α gives an infinite collection of strings each of which belongs to
L. In order that L is finite we then require L to consist of no strings of length > n. However, we cannot
check that this condition is satisfied by simulating the PDA P on all strings of length > n, since there are
infinitely many such strings and the sequence of simulation does not halt. Assume that L is infinite and l
is the minimum length of a string in L of length > n. We claim that n 6 l 6 2n − 1. Assume not, i.e.,
l > 2n. Let α be a string of length l in L. The pumping lemma gives a decomposition α = α1α2α3α4α5 so
that β = α1α3α5 is in L too. We have 1 6 |α2α4| 6 n by the pumping lemma. So β is again a string in L
of length > n. This contradicts the choice of l (and α).

So it suffices to check only the strings of length between n and 2n − 1. There are finitely many of them.
Since APDA is decidable, a TM can check in finite time whether each of these strings belongs to L(P).
Finally, note that the pumping lemma constant n can be computed from the description of P . For example,
we may take n = b|V |+2, where V is the set of non-terminals and b is the maximum number of symbols on
the right side of a rule in a CFG equivalent to P .

(d) MOVETM,α = {〈M,α〉 |M is a TM that makes at least ten moves on input α}.

Solution Simulate M on α for at most ten moves. If M halts before ten moves, reject, else accept.

(e) MOVETM,n = {〈M,n〉 | M is a TM that makes at least n moves on some input}. (Hint: First argue
that it suffices to restrict attention only to input strings of length 6 n.)

Solution In n moves a TM M can scan at most n cells starting from the left end. So irrespective of what
the length of the input string is, M makes at least n moves if and only if it does so on a string of length 6 n.
So simulate M for at most n steps on each input string α of length 6 n. If any string of length 6 n is found
on which M does not halt before making n moves, then accept, else reject.

2

4. Consider the language

L4 = {〈M〉 |M is a TM which halts on the input 01011}.

Prove the following assertions:

(a) L4 is Turing-recognizable.

Solution Simulate M on 01011. If M halts (after accepting or rejecting), then accept. If M does not halt
on 01011, then the simulation does not stop and so 〈M〉 is anyway not accepted.

(b) L4 is not Turing-decidable.

Solution Let us reduce ATM to L4, i.e., we convert 〈M,α〉 to 〈M ′〉 such that M ′ halts on 01011 if and only
if M accepts α. Here is a description of M ′.

Input: β.

Steps

if β 6= 01011, then halt (after accepting β).
if β = 01011,

simulate M on 01011.
if M accepts 01011 (and hence halts), then halt (after accepting β).
if M rejects 01011 after halting, then go to an infinite loop.

It follows that M ′ halts on every input other than 01011. If the input is 01011, then there are three
possibilities: M accepts α (after halting), M rejects α after halting, M goes to an infinite loop on α (and
hence implicitly rejects α). Only in the first case, M ′ halts on 01011. In the second case, M ′ enters a forced
infinite loop. In the third case, the simulation of M on α by M ′ never terminates.

(c) L4 is not Turing-recognizable.

Solution If L4 were Turing-recognizable, then Part (a) would imply that L4 is Turing-decidable, a
contradiction to Part (b).

5. Consider the language

L5 = {〈M〉 |M is a TM which halts on every input}.

(a) Use a reduction from L4 to L5 to prove that L5 is not Turing-recognizable. (Hint: Suppose that 〈M〉
maps to 〈M ′〉 under the reduction. Let M ′ simulate M on input 01011 for n steps, where n is the length of
the input string for M ′.)

Solution I propose a reduction from L4 to L5 that maps 〈M〉 to 〈M ′〉 such that M ′ halts on every input if
and only if M does not halt on 01011. Here is a description of M ′.

Input: β.

Steps

determine the length n of the input β.
simulate M on 01011 for exactly n steps.
if the simulation halts (after accepting or rejecting 01011) within n steps, enter an infinite loop,
else stop the simulation and halt (after accepting or rejecting β).

3

If M does not halt on 01011, then irrespective of the length n of β, the simulation of M on 01011 for n
steps does not reach a halting configuration. In this case, M ′ simply halts after aborting the simulation. On
the other hand, if M halts on 01011 after the m-th step (for m <∞), then for any input β of length n > m,
M ′ enters an infinite loop and fails to halt.

Since L4 is not Turing-recognizable (Exercise 4(c)), it follows that L5 is also not Turing-recognizable.

(b) Use a reduction from L4 to L5 to prove that L5 is also not Turing-recognizable.

Solution Let me now describe a reduction from L4 to L5 that maps 〈M〉 to 〈M ′〉 such that M ′ does not
halt on some input string β if and only if M does not halt on 01011. It is natural to take β = 01011, so that
M ′ can simply simulate M on input 01011. A description of M ′ now follows:

Input: β.

Steps

if β 6= 01011, halt (after accepting or rejecting β).
if β = 01011, then

simulate M on 01011.
if the simulation halts, halt (after accepting or rejecting β).

Evidently, M ′ halts on every input other than 01011. On the other hand, M ′ halts on the input 01011 if and
only if M does so on the same input. Thus the reduction is as desired.

Finally, since L4 is not Turing-recognizable, it follows that L5 too is not Turing-recognizable.

Dr. Abhijit Das, Dept. of Computer Science & Engineering, IIT Kharagpur, India

4

