CS30053 Foundations of Computing, Autumn 2005

Class test 1

Total marks: 20	September 08, 2005	Duration: 1 hour	
Name:	Roll No:		
Use	Answer all questions in the respective spaces provide extra sheets for rough work. Any such extra sheet will not	Answer all questions in the respective spaces provided. sheets for rough work. Any such extra sheet will not be corrected.	
1. Design a finite autor	naton (deterministic or nondeterministic) to recognize the	language (5)	

 $\{\alpha \in \{a, b\}^* \mid \text{the number of } a \text{'s in } \alpha \text{ minus the number of } b \text{'s in } \alpha \text{ is not a multiple of } 3\}.$

2. Design a finite automaton (deterministic or nondeterministic) to recognize the set of strings over the alphabet $\{a, b, c\}$, generated by the regular expression $(aa \cup b)c(aa \cup b)^*$. (5)

3. Consider the language

$$L = \{a^{i}b^{j}c^{k} \in \{a, b, c\}^{*} \mid i, j, k \ge 0 \text{ and } i + j = k\}.$$

(a) Prove that L is not regular.

(5)

(5)

(b) Design a context-free grammar G with $\mathcal{L}(G) = L$.