CS30053 Foundations of Computing, Autumn 2005

Class test 1 : Solutions

Answer all questions in the respective spaces provided. Use extra sheets for rough work. Any such extra sheet will not be corrected.

(5)

1. Design a finite automaton (deterministic or nondeterministic) to recognize the language

 $\{\alpha \in \{a, b\}^* \mid \text{the number of } a \text{'s in } \alpha \text{ minus the number of } b \text{'s in } \alpha \text{ is not a multiple of } 3\}.$

2. Design a finite automaton (deterministic or nondeterministic) to recognize the set of strings over the alphabet $\{a, b, c\}$, generated by the regular expression $(aa \cup b)c(aa \cup b)^*$. (5)

3. Consider the language

$$L = \{a^{i}b^{j}c^{k} \in \{a, b, c\}^{*} \mid i, j, k \ge 0 \text{ and } i + j = k\}.$$

(a) Prove that L is not regular.

Assume that *L* is a regular language. Let *n* be a pumping lemma constant for *L*. Then the string $\alpha = a^n c^n$ belongs to *L* and has length $\ge n$. So by the pumping lemma we have a decomposition $\alpha = \alpha_1 \alpha_2 \alpha_3$. Since $|\alpha_1 \alpha_2| \le n$, α_2 consists only of *a*'s. Moreover, $\alpha_2 \ne \epsilon$. Finally, $\alpha_1 \alpha_3 \in L$, but $\alpha_1 \alpha_3$ lacks the requisite counts of *a*'s (and *b*'s) to deserve inclusion in *L*, a contradiction.

(5)

(5)

(b) Design a context-free grammar G with $\mathcal{L}(G) = L$. The CFG $G = (\{S, T\}, \{a, b, c\}, R, S)$ has $\mathcal{L}(G) = L$, where the rules of R are:

 $\begin{array}{rcl} S & \rightarrow & aSc \mid T \\ T & \rightarrow & bTc \mid \epsilon \end{array}$