CS30053 Foundations of Computing, Spring 2004

Mid-Semester Examination

	Total points	s: 30 September 21, 2004 Total time: 2 hours	
		Answer any five questions. If you answer more, you must clearly indicate which five questions I would evaluate. If you fail to mention that, I will consider the five questions in which you score least points. This exam is open-notes. You may bring any amount of hand-written material.	
1.	(a) $(\neg p \land q)$ (b) $(p \rightarrow q)$	The propositions. Show that: $q) \lor (q \to p)$ is a tautology. $q) \land (p \land \neg q)$ is a contradiction. $) \lor r$ is not equivalent to $p \land (q \lor r)$. (2)	2×3)
2.	(a) Given	e positive integers. Prove that: $x \in \mathbb{R}$, there exist an integer q and a real number r such that $x = qc + r$ and $0 \le r < c$. (3) $ /b = \lfloor x/(ab) \rfloor$ for all $x \in \mathbb{R}$. (3)	
	equivalent: (1) f is not t (2) There ex (3) There ex (You may pr	$1, 2, 3,, n$ and $f : A \to A$ a bijective function. Prove that the following three conditions are the identity function ι_A . xists $i \in A$ with $f(i) > i$. xists $j \in A$ with $f(j) < j$. prove the implications (1) \iff (2) and (1) \iff (3).) $f : \mathbb{N} \to \mathbb{N}$ is recursively defined as:	5)
	(a) Prove b	$= 1,$ $= 2,$ $= 5f(n-1) - 6f(n-2) + 1 \text{ for } n \ge 2.$ by induction on n that $2f(n-1) \le f(n) \le 3f(n-1) - 1$ for all $n \ge 1.$ (4) ude that $f(n)$ is $O(3^n)$ and $\Omega(2^n)$. (2)	
5.	Let $F_n, n \in$ (a) F_{2n+1} (b) F_{2n+2}		2×3)
	subsets A, E	, a_n be positive integers with $\sum_{i=1}^n a_i < 2^n - 1$. Prove that there exist distinct disjoint non-empty B of $\{a_1, a_2, \dots, a_n\}$ with the property that $\sum_{a \in A} a = \sum_{b \in B} b$. (6)	6)
7.	Let $k \in \mathbb{N}$.	Show that the total number of solutions with non-negative integer values of the variables of:	

- (a) $x_1 + 2x_2 = 2k$ is k + 1. (2)
- **(b)** $x_1 + 2x_2 + 4x_3 = 4k$ is $(k+1)^2$. (4)