- **1.** (a) $q \to p \equiv \neg q \lor p \equiv \neg (\neg p \land q)$. So the given expression is equivalent to $t \lor \neg t$, where $t := \neg p \land q$.
 - (b) As in Part (a) the given expression is equivalent to $t \wedge \neg t$, where $t := p \wedge \neg q$.
 - (c) For p = F and r = T, $(p \land q) \lor r$ evaluates to T, whereas $p \land (q \lor r)$ evaluates to F.
- **2.** (a) Let $q := \lfloor x/c \rfloor$. We can write $x/c = q + \epsilon$ with $0 \le \epsilon < 1$. But then x = qc + r, where $0 \le r := c\epsilon < c$.

(b) Take c := ab and write x = qab + r, where $q = \lfloor x/(ab) \rfloor$ and $0 \le r < ab$. But then x/a = qb + (r/a) and so $\lfloor x/a \rfloor = qb + \lfloor r/a \rfloor$, i.e., $\lfloor \lfloor x/a \rfloor/b \rfloor = q + \lfloor \lfloor r/a \rfloor/b \rfloor$. Now $\lfloor r/a \rfloor \le r/a < ab/a = b$ and $\lfloor r/a \rfloor \ge 0$. Therefore, $\lfloor \lfloor r/a \rfloor/b \rfloor = 0$.

3. $[\neg(1) \Rightarrow \neg(2)]$ Obvious.

 $[\neg(2) \Rightarrow \neg(1)]$ Assume that $f(i) \leq i$ for all i = 1, 2, ..., n. Suppose that f(i) < i for some i. Since f is bijective, f(1), f(2), ..., f(n) is a permutation of 1, 2, ..., n. But then $1 + 2 + \cdots + n = \sum_{i=1}^{n} f(i) < \sum_{i=1}^{n} i$, which is absurd. So f(i) = i for all i, i.e., $f = \iota_A$.

The implications $\neg(1) \Longleftrightarrow \neg(3)$ can be proved similarly.

4. (a) The inequalities clearly hold for n = 1. So take $n \ge 2$ and assume that the inequalities hold for n - 1, i.e., $2f(n-2) \le f(n-1) \le 3f(n-2) - 1$. It then follows that $2f(n-1) + 2 \le 6f(n-2) \le 3f(n-1)$. Now f(n) = 5f(n-1) - 6f(n-2) + 1, i.e., $f(n) \ge 5f(n-1) - 3f(n-1) + 1 = 2f(n-1) + 1 \ge 2f(n-1)$. Also $f(n) \le 5f(n-1) - (2f(n-1) + 2) + 1 = 3f(n-1) - 1$.

(b) For all $n \in \mathbb{N}$ we have $f(n) \leq 3f(n-1) - 1 \leq 3f(n-1) \leq 3^2 f(n-2) \leq 3^3 f(n-3) \leq \cdots \leq 3^n f(0) = 3^n$. Similarly, $f(n) \ge 2f(n-1) \ge 2^2 f(n-2) \ge 2^3 f(n-3) \ge \cdots \ge 2^n f(0) = 2^n$.

- 5. Let me prove the assertions by induction on n. All the assertions are clearly true for n = 0. So let me prove only the inductive steps. The expressions in square brackets follow from the induction hypotheses.
 - (a) $F_{2(n+1)+1} = F_{2n+3} = F_{2n+1} + F_{2n+2} = [1 + F_2 + F_4 + \dots + F_{2n}] + F_{2n+2} = 1 + F_2 + F_4 + \dots + F_{2(n+1)}.$

(b)
$$F_{2(n+1)+2} = F_{2n+4} = F_{2n+2} + F_{2n+3} = [F_1 + F_3 + \dots + F_{2n+1}] + F_{2n+3} = F_1 + F_3 + \dots + F_{2(n+1)+1}.$$

(c)
$$gcd(F_{n+1}, F_{n+2}) = gcd(F_{n+1}, F_{n+2} - F_{n+1}) = gcd(F_{n+1}, F_n) = gcd(F_n, F_{n+1}) = [1]$$

- 6. Let $S := \{a_1, a_2, \ldots, a_n\}$. Since S has $2^n 1$ non-empty subsets and the sum $\sum_{x \in A} x$ for a nonempty subset A of S can assume $\leq 2^n - 2$ values (between 1 and $2^n - 2$), by the pigeon-hole principle $\sum_{a \in A'} a = \sum_{b \in B'} b$ for two distinct non-empty subsets A' and B' of S. Now throw away the common elements from A' and B', i.e., take $A := A' \setminus B' = A' \setminus (A' \cap B')$ and $B := B' \setminus A' = B' \setminus (A' \cap B')$. Then A and B are non-empty too and we continue to have $\sum_{a \in A} a = \sum_{b \in B} b$.
- 7. (a) For each value of $x_2 \in \{0, 1, ..., k\}$ we get a unique non-negative solution for x_1 . For $x_2 > k$ the value of x_1 becomes negative (and so unacceptable).

(b) If $x_3 > l$, we cannot have non-negative solutions for both x_1 and x_2 . For $x_3 = l \in \{0, 1, ..., k\}$ we have $x_1 + x_2 = 2(2k - 2l)$, which has 2k - 2l + 1 solutions for (x_1, x_2) by Part (a). Thus the total number of solutions of the original equation is $\sum_{l=0}^{k} (2k - 2l + 1) = (2k + 1) + (2k - 1) + \dots + 5 + 3 + 1 = (k + 1)^2$.