
CS30053 Foundations of Computing, Spring 2004

Mid-Semester Examination : Solutions

1. (a) q → p ≡ ¬q ∨ p ≡ ¬(¬p ∧ q). So the given expression is equivalent to t ∨ ¬t, where t := ¬p ∧ q.

(b) As in Part (a) the given expression is equivalent to t ∧ ¬t, where t := p ∧ ¬q.

(c) For p = F and r = T, (p ∧ q) ∨ r evaluates to T, whereas p ∧ (q ∨ r) evaluates to F.

2. (a) Let q := bx/cc. We can write x/c = q+εwith 0 6 ε < 1. But then x = qc+r, where 0 6 r := cε < c.

(b) Take c := ab and write x = qab+ r, where q = bx/(ab)c and 0 6 r < ab. But then x/a = qb+ (r/a)
and so bx/ac = qb + br/ac, i.e., bbx/ac/bc = q + bbr/ac/bc. Now br/ac 6 r/a < ab/a = b and
br/ac > 0. Therefore, bbr/ac/bc = 0.

3. [¬(1)⇒ ¬(2)] Obvious.

[¬(2) ⇒ ¬(1)] Assume that f(i) 6 i for all i = 1, 2, . . . , n. Suppose that f(i) < i for some i. Since f is
bijective, f(1), f(2), . . . , f(n) is a permutation of 1, 2, . . . , n. But then 1 + 2 + · · · + n =

∑n
i=1 f(i) <∑n

i=1 i, which is absurd. So f(i) = i for all i, i.e., f = ιA.

The implications ¬(1)⇐⇒¬(3) can be proved similarly.

4. (a) The inequalities clearly hold for n = 1. So take n > 2 and assume that the inequalities hold for n− 1,
i.e., 2f(n− 2) 6 f(n− 1) 6 3f(n− 2)− 1. It then follows that 2f(n− 1) + 2 6 6f(n− 2) 6 3f(n− 1).
Now f(n) = 5f(n−1)−6f(n−2)+1, i.e., f(n) > 5f(n−1)−3f(n−1)+1 = 2f(n−1)+1 > 2f(n−1).
Also f(n) 6 5f(n− 1)− (2f(n− 1) + 2) + 1 = 3f(n− 1)− 1.

(b) For all n ∈ N we have f(n) 6 3f(n − 1) − 1 6 3f(n − 1) 6 32f(n − 2) 6 33f(n − 3) 6 · · · 6
3nf(0) = 3n. Similarly, f(n) > 2f(n− 1) > 22f(n− 2) > 23f(n− 3) > · · · > 2nf(0) = 2n.

5. Let me prove the assertions by induction on n. All the assertions are clearly true for n = 0. So let me prove
only the inductive steps. The expressions in square brackets follow from the induction hypotheses.

(a) F2(n+1)+1 = F2n+3 = F2n+1+F2n+2 = [1+F2+F4+· · ·+F2n]+F2n+2 = 1+F2+F4+· · ·+F2(n+1).

(b) F2(n+1)+2 = F2n+4 = F2n+2+F2n+3 = [F1+F3+· · ·+F2n+1]+F2n+3 = F1+F3+· · ·+F2(n+1)+1.

(c) gcd(Fn+1, Fn+2) = gcd(Fn+1, Fn+2 − Fn+1) = gcd(Fn+1, Fn) = gcd(Fn, Fn+1) = [1].

6. Let S := {a1, a2, . . . , an}. Since S has 2n − 1 non-empty subsets and the sum
∑
x∈A x for a non-

empty subset A of S can assume 6 2n − 2 values (between 1 and 2n − 2), by the pigeon-hole principle∑
a∈A′ a =

∑
b∈B′ b for two distinct non-empty subsets A′ and B′ of S. Now throw away the common

elements from A′ and B′, i.e., take A := A′ \ B′ = A′ \ (A′ ∩ B′) and B := B′ \ A′ = B′ \ (A′ ∩ B′).
Then A and B are non-empty too and we continue to have

∑
a∈A a =

∑
b∈B b.

7. (a) For each value of x2 ∈ {0, 1, . . . , k} we get a unique non-negative solution for x1. For x2 > k the
value of x1 becomes negative (and so unacceptable).

(b) If x3 > l, we cannot have non-negative solutions for both x1 and x2. For x3 = l ∈ {0, 1, . . . , k} we
have x1 +x2 = 2(2k−2l), which has 2k−2l+1 solutions for (x1, x2) by Part (a). Thus the total number of
solutions of the original equation is

∑k
l=0(2k−2l+ 1) = (2k+ 1) + (2k−1) + · · ·+ 5 + 3 + 1 = (k+ 1)2.
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