CS30053 Foundations of Computing, Spring 2004

Mid-Semester Examination : Solutions

. (@ qg—p=-qVp=-(-pAq). Sothe given expression is equivalent to ¢ \V —t, where t := —p A q.
(b) As in Part (a) the given expression is equivalent to ¢ A —t, where ¢ :=p A —q.

(¢) Forp=Fandr =T, (pAq) V revaluates to T, whereas p A (¢ VV r) evaluates to F.

. (@) Letq:= |z/c]. Wecanwrite z/c = q+ewith0 < € < 1. Butthenz = gc+r, where 0 < r := ce < c.

(b) Take ¢ := ab and write z = gab+ r, where ¢ = |x/(ab)| and 0 < r < ab. Butthen z/a = gb+ (r/a)
and so |z/a| = ¢b+ [r/al, ie., ||x/a|/b] = q+ ||r/a]/b]. Now |r/a] < r/a < ab/a = b and
|r/a| > 0. Therefore, |[7/a]/b] = 0.

. [=(1) = —(2)] Obvious.

[-(2) = —(1)] Assume that f(i) < iforalli =1,2,...,n. Suppose that f(i) < i for some 4. Since f is
bijective, f(1), f(2),..., f(n) is a permutation of 1, 2 ,n.Butthen1 +2+---+n = >", f(i) <
> i, which is absurd. So f@)=1iforalli,ie., f=

The implications —(1) <= —(3) can be proved similarly.

. (@) The inequalities clearly hold for n = 1. So take n > 2 and assume that the inequalities hold for n — 1,
ie,2f(n—2) < f(n—1) < 3f(n—2)—1. It then follows that 2f (n — 1) + 2 < 6 f(n —2) < 3f(n—1).
Now f(n) =5f(n—1)—6f(n—2)+1,ie., f(n) > 5f(n—1)—3f(n—1)+1=2f(n—1)+1 > 2f(n—1).
Also f(n) <5f(n—1)—(2f(n—1)+2)+1=3f(n—1)— 1.

(b) Foralln € Nwehave f(n) < 3f(n—1)—1<3f(n—1) <3%f(n— ) 3fn—3) < <
3"f(0) = 3™. Similarly, f(n) > 2f(n—1) 2 2%f(n—2) > 23f(n—3) > --- > 2" f(0) = 2".

. Let me prove the assertions by induction on n. All the assertions are clearly true for n = 0. So let me prove
only the inductive steps. The expressions in square brackets follow from the induction hypotheses.

@) Fomiry41 = Fonys = Fopp1+Fopi2 = 1+ Fo+ Pyt -+ Fop |+ Fopyo = 14+ Fo+ Fy+ -+ Fon ).
b)) Fyngny2 = Fonsa = Fopo+Fonys = [F1+F3+- -+ Fappa ]+ Fonys = FL+F3+- -+ Foppny41-

(©) ged(Fry1, Frye) = ged(Fpqt, Fogo — Fog1) = ged(Fnq1, Fn) = ged(Fp, Frpr) = [1].

. Let S := {a1,a2,...,a,}. Since S has 2" — 1 non-empty subsets and the sum > 4« for a non-
empty subset A of S can assume < 2" — 2 values (between 1 and 2" — 2), by the pigeon-hole principle
Y acar @ = Y pep b for two distinct non-empty subsets A’ and B’ of S. Now throw away the common
elements from A’ and B', i.e.,take A .= A’\ B' = A'"\ (A/NB')and B:= B'\ A =B\ (A NH).
Then A and B are non-empty too and we continue to have > ,c 4 a = > g b.

. (a) For each value of z9 € {0,1,...,k} we get a unique non-negative solution for ;. For 23 > k the
value of x1 becomes negative (and so unacceptable).

(b) If z3 > [, we cannot have non-negative solutions for both 1 and x9. For z3 = [ € {0,1,...,k} we
have 21 +x9 = 2(2k — 2l), which has 2k — 2]+ 1 solutions for (x1, z2) by Part (a). Thus the total number of
solutions of the original equation is Y5 (2k — 214+ 1) = (2k+ 1)+ (2k—1)+---+5+3+1 = (k+1)2
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