- 1. Define a recurrence relation and the requisite number of initial conditions for each of the following:
 - (a) The number of binary strings of length n, that do not contain three consecutive 0's.
- * (b) The number of binary strings of length n, that do not contain k consecutive 0's, where $k \in \mathbb{Z}^+$ is a constant. (Hint: Look at the first occurrence of 1.)
- 2. How many initial conditions are needed for completely specifying the sequences defined by the following recurrence relations? Also explicitly mention for which values of n one should specify these initial conditions. Assume that each sequence a_n in this exercise starts from n = 0.
 - (a) $a_n = a_{n-2}$.
 - (**b**) $a_n = a_2$.
 - (c) $a_n = 2a_{n-2}^2 + 3a_{n-3}^3 + 4^{n-4}$.
 - (d) $a_n = (n-1)a_{n-1} + (n-2)a_{n-2} + \dots + 2a_2 + a_1.$
 - (e) $a_n = na_{n-1} + (n-1)a_{n-2} + \dots + 3a_2 + 2a_1 + a_0$.
 - (f) $a_n = a_{\lfloor n/2 \rfloor} a_{\lfloor n/2 \rfloor} + 1.$

3. Solve the following recurrence relations:

- (a) $a_0 = 2, a_1 = 3, a_n = a_{n-1} + 12a_{n-2}$ for $n \ge 2$.
- (b) $a_0 = 2, a_1 = 3, 6a_n = a_{n-1} + 12a_{n-2}$ for $n \ge 2$.
- (c) $a_0 = 2, a_1 = 3, a_2 = 4, a_n = a_{n-1} + 4a_{n-2} 4a_{n-2}$ for $n \ge 3$.
- (d) $a_0 = 2, a_1 = 3, a_2 = 4, a_3 = 5, a_n = 2a_{n-2} a_{n-4}$ for $n \ge 4$.
- (e) $a_0 = 2, a_1 = 3, a_2 = 4, a_3 = 5, a_n = 3a_{n-2} 2a_{n-4}$ for $n \ge 4$.
- (f) $a_0 = 2, a_n = 5a_{n-1} + (n^2 + n + 1)$ for $n \ge 1$.
- (g) $a_0 = 2, a_n = 5a_{n-1} + (n^2 + n + 1)2^n$ for $n \ge 1$.
- (h) $a_0 = 2, a_1 = 3, a_n = 2(a_{n-1} + a_{n-2} + 2^n)$ for $n \ge 2$.
- (i) $a_0 = 2, a_1 = 3, a_n = 4(a_{n-1} a_{n-2} + 2^n)$ for $n \ge 2$.
- (j) $a_0 = 2, a_1 = 3, a_n = 4(a_{n-1} a_{n-2} + n2^{2n-1})$ for $n \ge 2$.
- 4. Reduce the following recurrence relations to standard forms and solve:

(a)
$$a_0 = 2, a_1 = 3, a_n = a_{n+2} - a_{n+1} - n$$
 for all $n \ge 0$.
(b) $a_0 = 2, a_1 = 3, 4a_{n+1} + 8a_n - 5a_{n-1} = 2^n$ for all $n \ge 1$.
(c) $a_0 = 2, a_1 = 3, a_n = a_{n-1} + 12(a_{n-2} + 2^{n-2} + 1)$ for all $n \ge 2$.
(d) $a_0 = 2, a_n^3 = a_{n-1}(3a_n^2 - 3a_na_{n-1} + a_{n-1}^2) + n^3$ for all $n \ge 1$.
* (e) $a_0 = 2, a_1 = 3, 2a_na_{n-2} - 2a_{n-1}^2 - 3a_{n-1}a_{n-2} = 0$ for all $n \ge 2$.
(f) $a_0 = 2, a_1 = 3, 2^{a_n} = 4^n \times 16^{a_{n-2}}$ for all $n \ge 2$.

1.

5. Let b_n be a sequence satisfying the recurrence

$$b_n = d_1 b_{n-1} + d_2 b_{n-2} + \dots + d_k b_{n-k} + F(n)$$
 for $n \ge k$,

and c_n another sequence satisfying the recurrence

$$c_n = d_1 c_{n-1} + d_2 c_{n-2} + \dots + d_k c_{n-k} + G(n)$$
 for $n \ge k$,

where $k \in \mathbb{Z}^+$ and $d_1, d_2, \ldots, d_k \in \mathbb{R}$ are constants. Consider the sequence $a_n := b_n + c_n$.

(a) Show that the sequence a_n satisfies the recurrence

$$a_n = d_1 a_{n-1} + d_2 a_{n-2} + \dots + d_k a_{n-k} + F(n) + G(n) \text{ for } n \ge k.$$
(1)

(b) Let $F(n) = p(n)s^n$ and $G(n) = q(n)t^n$, where p(n) and q(n) are polynomials with real coefficients and where s and t are distinct non-zero real constants. Give a particular solution of (1).

Solve the following recurrences:

(c) $a_0 = 2, a_n = 2a_{n-1} + 2^n + n^2$ for all $n \ge 1$. (d) $a_0 = 2, a_1 = 3, a_n = 2a_{n-1} - a_{n-2} + 2^n + n^2$ for all $n \ge 2$. (e) $a_0 = 2, a_1 = 3, a_n = a_{n-2} + 2^n + n^{3n} + n^2 4^n$ for all $n \ge 2$.

- 6. Find big-O estimates for the following positive-integer-valued increasing functions f(n).
 - (a) $f(n) = 125f(n/4) + 2n^3$ whenever $n = 4^k$ for $k \in \mathbb{Z}^+$.
 - (b) $f(n) = 125f(n/5) + 2n^3$ whenever $n = 5^k$ for $k \in \mathbb{Z}^+$.
 - (c) $f(n) = 125f(n/6) + 2n^3$ whenever $n = 6^k$ for $k \in \mathbb{Z}^+$.
- 7. Let f(n) be an increasing positive-real-valued function of a non-negative integer variable n. Give a big-O estimate of f(n) for each of the following cases:
 - (a) $f(n) = 2f(\sqrt{n}) + 1$ whenever n is a perfect square bigger than 1.
 - (b) $f(n) = 2f(\sqrt{n}) + \log n$ whenever n is a perfect square bigger than 1.
 - (c) $f(n) = 2f(\sqrt{n}) + \log^2 n$ whenever n is a perfect square bigger than 1.
 - (d) $f(n) = af(\sqrt[b]{n}) + c(\log n)^d$ whenever n is a perfect b-th power bigger than 1. Here $a, b \in \mathbb{N}, a \ge 1$, $b \ge 2, c, d \in \mathbb{R}, c > 0$ and $d \ge 0$.
- 8. Use generating functions to prove the following identities:

(a)
$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}$$
. (b) $\binom{m}{r} = \sum_{k=0}^{2r} (-1)^{r+k} \binom{m}{k} \binom{m}{2r-k}$.
(c) $\binom{m}{r} = \sum_{k=0}^{\lfloor r/2 \rfloor} (-1)^{k} \binom{m}{k} \binom{m+r-2k-1}{r-2k}$.

- 9. Use generating functions to solve the following recurrence relations:
 - (a) $a_0 = 2, a_n = 5a_{n-1} + 4n + 3$ for $n \ge 1$.
 - **(b)** $a_0 = 2, a_1 = 3, a_n = 5a_{n-1} 6a_{n-2}$ for $n \ge 2$.
 - (c) $a_0 = 2, a_1 = 3, a_n = 5a_{n-1} 6a_{n-2} + 7^n$ for $n \ge 2$.
 - (d) $a_0 = 2, a_1 = 3, a_n = 3a_{n-1} 2a_{n-2} + 2^n$ for $n \ge 2$.
 - (e) $a_0 = 2, a_1 = 3, a_n = 3a_{n-1} 2a_{n-2} + 2^n + 1$ for $n \ge 2$.
 - (f) $a_0 = 2, a_1 = 3, a_n = 4a_{n-1} 4a_{n-2} + 2^n + 1$ for $n \ge 2$.
- **10.** Let $a(x) = a_0 + a_1x + a_2x^2 + \cdots$, $b(x) = b_0 + b_1x + b_2x^2 + \cdots$ and $c(x) = c_0 + c_1x + c_2x^2 + \cdots$ be power series. Show that:
 - (a) a(x)(b(x) + c(x)) = a(x)b(x) + a(x)c(x).
 - (b) a(x) is invertible (i.e., there exists a power series d(x) with a(x)d(x) = 1) if and only if $a_0 \neq 0$.