- **1.** Count the numbers of bit-strings of length ten that:
 - (a) start with 01 and end with 10.
 - (b) start with 01 and do not end with 10.
 - (c) neither start with 01 nor end with 10.
 - (d) contain neither 01 nor 10 as a substring.
- 2. Count the numbers of positive integers less than or equal to 1000 that are:
 - (a) divisible by 5 or 7 (or both). (e) divi
 - (b) divisible by both 5 and 7.
 - (c) divisible by neither 5 nor 7.
 - (d) divisible by 5 but not by 7.

- (e) contain 01 but not 10 as a substring.
- (f) contain both 01 and 10 as substrings.
- (g) contain equal number of 0's and 1's.
- (h) contain more 0's than 1's.
- (e) divisible by 6 or 8 (or both).
 - (f) divisible by both 6 and 8.
 - (g) divisible by neither 6 nor 8.
 - (h) divisible by 6 but not by 8.
- 3. Prove that if five points are placed inside an equilateral triangle of side 1 cm, there exist two of these points, that are no more than 1/2 cm apart.
- 4. Let n be an odd positive integer and π a permutation of 1, 2, ..., n, i.e., a bijective function $A \to A$, where $A := \{1, 2, ..., n\}$. Prove that the product $\prod_{i=1}^{n} (i \pi(i))$ is even. (Hint: Look at the (n + 1)/2 images $\pi(1), \pi(3), \pi(5), ..., \pi(n)$.) Show that the result need not hold if n is even.
- 5. Prove that in any group of $n \ge 2$ persons, there exist two persons having equal number of acquaintances (among the given *n* persons). Assume that acquaintance is a symmetric relation, i.e., two persons are either both acquainted or both strangers to one another.
- 6. Let $A \subseteq \{1, 2, ..., 2n\}$ with |A| = n + 1. Prove that:
 - (a) There exist $x_1, y_1 \in A$ such that $x_1 y_1 = 1$.
 - (b) There exist $x_2, y_2 \in A$ such that $x_2 y_2 = n$.
 - * (c) There exist $x_3, y_3 \in A$ such that $gcd(x_3, y_3) = 1$.
- 7. Let a_1, a_2, \ldots, a_n be *n* integers (not necessarily all distinct). Prove that there exists a non-empty subcollection a_{i_1}, \ldots, a_{i_k} with $k \ge 1$ and $1 \le i_1 < \cdots < i_k \le n$ such that $n \mid (a_{i_1} + \cdots + a_{i_k})$.
- ** 8. Let $F_n, n \in \mathbb{N}$, be the sequence of Fibonacci numbers and let $m \in \mathbb{Z}^+$. Prove that there exists $n \in \mathbb{Z}^+$ such that $m \mid F_n$. (Hint: Look at the remainder sequence $r_n, n \in \mathbb{N}$, where $r_n := F_n \operatorname{rem} m$.)
- * 9. Let f(X) be a polynomial with integer coefficients such that f(a) = f(b) = f(c) = 2 for three distinct integers a, b, c. Prove that $f(n) \neq 1$ for all $n \in \mathbb{Z}$. (Hint: First show that $(m n) \mid (f(m) f(n))$ for any two integers m, n.)
- 10. Count the numbers of solutions of the following:
 - (a) $x_1 + x_2 + x_3 + x_4 = 56$ with non-negative integers x_1, x_2, x_3, x_4 .
 - (b) $x_1 + x_2 + x_3 + x_4 = 56$ with positive integers x_1, x_2, x_3, x_4 .
 - (c) $x_1 + x_2 + x_3 + x_4 = 56$ with integers $x_1 \ge 1, x_2 \ge 2, x_3 \ge 3, x_4 \ge 4$.
 - * (d) $x_1 + x_2 + x_3 + x_4 \leq 56$ with nonnegative integers x_1, x_2, x_3, x_4 . (Hint: Introduce x_5 .)
 - * (e) $x_1 + x_2 + x_3 + x_4 \leq 56$ with integers $x_1 \ge 1, x_2 \ge 2, x_3 \ge 3, x_4 \ge 4$.
 - * (f) $x_1 + x_2 + x_3 + x_4 \ge 56$ with integers $x_1 \le 11, x_2 \le 22, x_3 \le 33, x_4 \le 44$. (Hint: $y_i := 11i x_i$.)