- 1. Which of the following estimates are true?
 - (a) $5n^2 \log n + 2(n^3/\log n)$ is $O(n^3)$.(e) 2^n is $\Omega(3^n)$.(b) $5n^2 \log n + 2n^3$ is $\Theta(n^3)$.(f) (2n)! is $\Theta(n!)$.(c) $2^{\sqrt{n}}$ is $\Theta((\sqrt{2})^n)$.(g) $\log((2n)!)$ is $\Theta(\log(n!))$.(d) n^2 is $\Omega(n^3)$.(h) 1/n is $\Theta(1)$.
- **2.** Let f and g be two real-valued functions of non-negative integer variables. We say that f(n) is o(g(n)), if $\lim_{n\to\infty} f(n)/g(n) = 0$, i.e., if for every $\epsilon > 0$ there exists $k \in \mathbb{N}$ such that $|f(n)| < \epsilon |g(n)|$ for all n > k. In this case, we also write $g(n) = \omega(f(n))$. Prove the following assertions:
- (a) 2n+3 is $o(5n^2+4n+3)$. (d) $2^{\sqrt{\lg n \lg \lg n}}$ is $\omega(n^d)$ for any $d \in \mathbb{N}$. (**b**) $n \text{ is } o(2^n).$ (e) 1/n is o(1). (c) $2^{\sqrt{\lg n \lg \lg n}}$ is $o(a^n)$ for any real a > 1. (f) 2^{-n} is $o(n^{-2})$. (g) f(n) is o(g(n)) if and only if f(n) is O(g(n)) but g(n) is not O(f(n)). (h) f(n) is $\omega(g(n))$ if and only if f(n) is $\Omega(g(n))$ but g(n) is not $\Omega(f(n))$. **3.** Why are the following *not* algorithms? (a) Input: n integers a_1, a_2, \ldots, a_n . **Output:** The smallest index *i* for which $a_i \ge a_{i+1}$. Steps: i := 1.while $(a_i < a_{i+1})$ i := i + 1. return *i*. (b) Input: A positive integer n. **Output:** The floating point sum $\frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n-1}$. **Steps:** s := 0.while (n > 0) { s := s + (1.0/(n-1)).n := n - 1.} return s. **** (c)** Input: Nothing. **Output:** The smallest integer n > 1 for which $\frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n}$ is an integer. Steps: n := 1, a := 1, b := 1.repeat { n := n + 1.a := an + b.
 - b := bn.} until $b \mid a.$ return n.
 - (d) Write an algorithm for solving each of the above problems.

4. Determine what the following two algorithms compute. Also derive the worst-case time complexities of

these algorithms. Assume that in each case the input is a sequence of n positive integers a_1, a_2, \ldots, a_n . For Part (b) assume that $a_1 \leq a_2 \leq \cdots \leq a_n$.

```
(a) for i = 1 to n set b_i := 0.

for i = 1 to n \{

for j = 1 to n \{

if (a_j = a_i) then b_j := b_j + 1.

}

m := 0, j := 0.

for i = 1 to n \{

if (b_i > m) then \{m := b_i, j := i.\}

}

return a_j.
```

```
(b) m := 1, j := 1, c := 1, b := a_1.
for i = 2 to n \{
if (a_i \neq b) then \{ c := 1, b := a_i. \}
else \{
c := c + 1.
if (c > m) then \{ m := c, j := i. \}
\}
```

```
return a_j.
```

- (c) Describe how you can use the algorithm of Part (b) to solve the problem of Part (a) in $O(n \log n)$ time.
- 5. Suppose that the study of the properties of some objects located in the Andromeda Galaxy requires the computation of a formula $f(a_1, a_2, \ldots, a_n)$ defined for positive integers a_1, a_2, \ldots, a_n as:

$$f(a_1, a_2, \dots, a_n) := \sum_{i \in S} \left(\prod_{j=1}^i a_j^2 \right),$$

where S is the set $\{i \mid 1 \leq i < n \text{ and } a_i \leq a_{i+1}\}$. I supply the following algorithm for the computation of $f(a_1, a_2, \ldots, a_n)$.

$$\begin{array}{l} s:=0,\\ \text{for }i=1 \text{ to }n-1 \; \{\\ \quad \text{ if }(a_i \leqslant a_{i+1}) \; \{\\ \quad p:=1,\\ \quad \text{ for }j=1 \text{ to }i \text{ do }p:=p \times a_j,\\ \quad s:=s+p^2,\\ \quad \}\\ \}\\ \text{return a} \end{array}$$

```
return s.
```

Compute the worst-case, average and best-case time complexity of my algorithm.

- 6. Suppose we want to compute for a given $n \in \mathbb{Z}^+$ the number of triples (i, j, k) with $1 \leq i \leq j \leq k \leq n$.
 - (a) Design an algorithm for this problem, that runs in $\Theta(n^3)$ time.
 - (b) Design an algorithm for this problem, that runs in $\Theta(n^2)$ time.
 - * (c) Design an algorithm for this problem, that runs in $\Theta(1)$ time. (Hint: Find a compact formula for the number of such triples.)
- 7. Consider the following modification of the binary search algorithm. Let a_1, a_2, \ldots, a_n be a sorted sequence of integers. In order to determine if an integer a occurs in the list, divide the list in three parts of nearly

equal sizes and determine in which part a may be located. Then divide this potential part into three subparts and so on. Since this search uses a three-way branching, one calls it ternary search.

- (a) Write the details of the ternary search algorithm.
- (b) Compute the worst-case time complexity of the ternary search algorithm.
- (c) If you are asked to choose between binary search and ternary search, which would you prefer. Why?
- *8. Prove that it is impossible to write a C program that takes as input a C program Q and an input I to Q and that determines whether Q on input I prints the string "Hello, world" as the first twelve printed characters.
 - 9. Prove that the union of a countable number of countable sets is again countable. (Hint: Look at $\mathbb{N} \times \mathbb{N}$.)
- * 10. Show that no set A can have bijective correspondence with its power set $\mathcal{P}(A)$. (Hint: Let $f : A \to \mathcal{P}(A)$ be a bijection. Look at the subset $S \subseteq A$ defined as $S := \{x \in A \mid x \notin f(x)\}$.)
 - **11.** Find the flaw in the following proof.

Theorem All horses are of the same color.

Proof Let there be n horses. We proceed by induction on n. If n = 1, there is nothing to prove. So assume that n > 1 and that the theorem holds for any group of n - 1 horses. From the given n horses discard one, say the first one. Then all the remaining n - 1 horses are of the same color by the induction hypothesis. Now put the first horse back and discard another, say the last one. Then the first n - 1 horses have the same color again by the induction hypothesis. So all the n horses must have the same color as the ones that were not discarded either time.

12. The Fibonacci sequence is defined recursively as

$$\begin{array}{rcl} F_0 & := & 0, \\ F_1 & := & 1, \\ F_n & := & F_{n-1} + F_{n-2} \text{ for } n \geqslant 2. \end{array}$$

Prove by induction that $F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$ for all $n \in \mathbb{N}$.

- 13. Let F_n , $n \in \mathbb{N}$, denote the sequence of Fibonacci numbers defined in Exercise 12. By using induction on n prove the following assertions:
 - (a) $F_1^2 + F_2^2 + \dots + F_n^2 = F_n F_{n+1}$ for all $n \in \mathbb{Z}^+$. (b) If $A := \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, then $A^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$ for all $n \in \mathbb{Z}^+$. (c) $F_{m+n} = F_{m-1}F_n + F_m F_{n+1}$ for all $m \in \mathbb{N}$ and $n \in \mathbb{Z}^+$.

14. Let $H_n := \frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n}$ for $n \ge 1$ (the harmonic numbers).

- (a) Use calculus to show that $\ln(n+1) \leq H_n \leq \ln n + 1$ for all $n \geq 1$. (Remark: It is known that $(H_n \ln n) \rightarrow \gamma$ as $n \rightarrow \infty$, where the constant $\gamma = 0.57721566...$ is called Euler's constant.)
- (b) Use induction to show that $H_1 + H_2 + \cdots + H_n = (n+1)H_n n$ for all $n \ge 1$.
- **15.** Let S be a subset of \mathbb{N} , such that 0 and 1 belong to S, and whenever n and n + 1 belong to S, so also does n + 2. Prove that $S = \mathbb{N}$.
- 16. Recursively define the following functions:
 - (a) $f_1 : \mathbb{N} \to \mathbb{N}$ given by $f_1(n) = 2n^3$ for all $n \in \mathbb{N}$.
 - (b) $f_2 : \mathbb{N} \to \mathbb{N}$ given by $f_2(n) = n^2 + 2n^3$ for all $n \in \mathbb{N}$.

- (c) $f_3: \mathbb{N} \to \mathbb{N}$ given by $f_3(n) = 3^{2n}$ for all $n \in \mathbb{N}$.
- * (d) $f_4 : \mathbb{N} \to \mathbb{N}$ given by $f_4(n) = 2^n + 3^{2n}$ for all $n \in \mathbb{N}$.
 - (e) $f_5: \mathbb{N} \to \mathbb{N}$ given by $f_5(n) = 3^{2^n}$ for all $n \in \mathbb{N}$.

(f) $\phi : \mathbb{Z}^+ \to \mathbb{Z}^+$ given by $\phi(n) := |\{a \mid 1 \leq a \leq n \text{ and } gcd(a, n) = 1\}|$. (Hint: Use without proof the results that $\phi(p^e) = p^e - p^{e-1}$ for a prime p and an exponent $e \in \mathbb{Z}^+$ and that if m, n are coprime, then $\phi(mn) = \phi(m)\phi(n)$.)

(g) det : $\mathcal{M} \to \mathbb{Z}$, where \mathcal{M} is the set of all square matrices with integer entries, and where det(A) is the determinant of a matrix $A \in \mathcal{M}$.

- (h) The binomial coefficients (): $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $\binom{n}{k} = \begin{cases} \frac{n!}{k!(n-k)!} & \text{if } k \leq n, \\ 0 & \text{otherwise.} \end{cases}$
- * (i) $S : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, where the Stirling number S(n,k) stands for the total number of ways of partitioning a set of cardinality n into exactly k non-empty parts. (Hint: Let $A := \{a_1, a_2, \ldots, a_n, a_{n+1}\}$. A partition of A is of one of the two kinds: i) $\{a_{n+1}\}$ is itself a member of the partition, and ii) a_{n+1} lies in a bigger set in the partition.)
- 17. Recursively define the following sets:
 - (a) $S_1 := \{a \in \mathbb{N} \mid a \equiv 3 \text{ or } 5 \pmod{7} \}.$
 - (b) $S_2 := \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid a + b \text{ is odd}\}.$
 - (c) The set S_3 of all palindromes over the binary alphabet $\{0, 1\}$.
 - * (d) The set S_4 of all strings over the binary alphabet $\{0, 1\}$, that contain equal numbers of 0's and 1's.
- ** (e) The set S_5 of all strings over the binary alphabet $\{0,1\}$ of the form $\alpha\alpha$ for some $\alpha \in \{0,1\}^*$.
- 18. What is wrong in the following recursive definition of *sets*.

BASIS: The empty collection is a set.

INDUCTION: If S is a set and a is an object not present in S, then adding a to S gives a set.

(Hint: Infinity is not a natural number.)

- **19.** Design recursive algorithms to compute the functions of Exercise 16. For Part (f) you may assume that you are given subroutines for primality testing and factorization of positive integers.
- 20. For notations refer to Exercise 17. Design recursive algorithms that compute the following:
 - (a) Given $k \in \mathbb{N}$, the cardinality of $\{a \in S_1 \mid a \leq k\}$.
 - (b) Given $k \in \mathbb{N}$, the elements of $\{a \in S_1 \mid a \leq k\}$.
 - (c) Given $(h,k) \in \mathbb{N}^2$, the cardinality of $\{(a,b) \in S_2 \mid (a,b) \leq (h,k) \text{ under the lexicographic ordering}\}$.
 - (d) Given $k \in \mathbb{N}$, the number of all palindromes over $\{0, 1\}$ of length $\leq k$.
 - (e) Given $k \in \mathbb{N}$, all palindromes over $\{0, 1\}$ of length $\leq k$, with each palindrome printed exactly once (but in any order of your convenience).
 - * (f) Given $k \in \mathbb{N}$, the number of all strings of S_4 of length $\leq k$.