
CS30053 Foundations of Computing, Spring 2004

Practice exercises : Set 2

1. Which of the following estimates are true?

(a) 5n2 log n+ 2(n3/ log n) is O(n3).

(b) 5n2 log n+ 2n3 is Θ(n3).

(c) 2
√
n is Θ((

√
2)n).

(d) n2 is Ω(n3).

(e) 2n is Ω(3n).

(f) (2n)! is Θ(n!).

(g) log((2n)!) is Θ(log(n!)).

(h) 1/n is Θ(1).

2. Let f and g be two real-valued functions of non-negative integer variables. We say that f(n) is o(g(n)), if
limn→∞ f(n)/g(n) = 0, i.e., if for every ε > 0 there exists k ∈ N such that |f(n)| < ε|g(n)| for all n > k.
In this case, we also write g(n) = ω(f(n)). Prove the following assertions:

(a) 2n+ 3 is o(5n2 + 4n+ 3).

(b) n is o(2n).

(c) 2
√

lgn lg lg n is o(an) for any real a > 1.

(d) 2
√

lgn lg lgn is ω(nd) for any d ∈ N.

(e) 1/n is o(1).

(f) 2−n is o(n−2).

(g) f(n) is o(g(n)) if and only if f(n) is O(g(n)) but g(n) is not O(f(n)).

(h) f(n) is ω(g(n)) if and only if f(n) is Ω(g(n)) but g(n) is not Ω(f(n)).

3. Why are the following not algorithms?

(a) Input: n integers a1, a2, . . . , an.
Output: The smallest index i for which ai > ai+1.
Steps:
i := 1.
while (ai < ai+1) i := i+ 1.
return i.

(b) Input: A positive integer n.
Output: The floating point sum 1

1 + 1
2 + · · ·+ 1

n−1 .
Steps:
s := 0.
while (n > 0) {

s := s+ (1.0/(n− 1)).
n := n− 1.

}
return s.

** (c) Input: Nothing.
Output: The smallest integer n > 1 for which 1

1 + 1
2 + · · ·+ 1

n is an integer.
Steps:
n := 1, a := 1, b := 1.
repeat {

n := n+ 1.
a := an+ b.
b := bn.

} until b | a.
return n.

(d) Write an algorithm for solving each of the above problems.

4. Determine what the following two algorithms compute. Also derive the worst-case time complexities of

these algorithms. Assume that in each case the input is a sequence of n positive integers a1, a2, . . . , an. For
Part (b) assume that a1 6 a2 6 · · · 6 an.

(a) for i = 1 to n set bi := 0.
for i = 1 to n {

for j = 1 to n {
if (aj = ai) then bj := bj + 1.

}
}
m := 0, j := 0.
for i = 1 to n {

if (bi > m) then {m := bi, j := i. }
}
return aj .

(b) m := 1, j := 1, c := 1, b := a1.
for i = 2 to n {

if (ai 6= b) then { c := 1, b := ai. }
else {

c := c+ 1.
if (c > m) then {m := c, j := i. }

}
}
return aj .

(c) Describe how you can use the algorithm of Part (b) to solve the problem of Part (a) in O(n log n) time.

5. Suppose that the study of the properties of some objects located in the Andromeda Galaxy requires the
computation of a formula f(a1, a2, . . . , an) defined for positive integers a1, a2, . . . , an as:

f(a1, a2, . . . , an) :=
∑

i∈S




i∏

j=1

a2
j


 ,

where S is the set {i | 1 6 i < n and ai 6 ai+1}. I supply the following algorithm for the computation of
f(a1, a2, . . . , an).

s := 0.
for i = 1 to n− 1 {

if (ai 6 ai+1) {
p := 1.
for j = 1 to i do p := p× aj .
s := s+ p2.

}
}
return s.

Compute the worst-case, average and best-case time complexity of my algorithm.

6. Suppose we want to compute for a given n ∈ Z+ the number of triples (i, j, k) with 1 6 i 6 j 6 k 6 n.

(a) Design an algorithm for this problem, that runs in Θ(n3) time.

(b) Design an algorithm for this problem, that runs in Θ(n2) time.

* (c) Design an algorithm for this problem, that runs in Θ(1) time. (Hint: Find a compact formula for the
number of such triples.)

7. Consider the following modification of the binary search algorithm. Let a1, a2, . . . , an be a sorted sequence
of integers. In order to determine if an integer a occurs in the list, divide the list in three parts of nearly

equal sizes and determine in which part a may be located. Then divide this potential part into three subparts
and so on. Since this search uses a three-way branching, one calls it t e r n a r y s e a r c h .

(a) Write the details of the ternary search algorithm.

(b) Compute the worst-case time complexity of the ternary search algorithm.

(c) If you are asked to choose between binary search and ternary search, which would you prefer. Why?

* 8. Prove that it is impossible to write a C program that takes as input a C program Q and an input I to Q and
that determines whether Q on input I prints the string “Hello, world” as the first twelve printed characters.

9. Prove that the union of a countable number of countable sets is again countable. (Hint: Look at N× N.)

* 10. Show that no set A can have bijective correspondence with its power set P(A). (Hint: Let f : A → P(A)
be a bijection. Look at the subset S ⊆ A defined as S := {x ∈ A | x 6∈ f(x)}.)

11. Find the flaw in the following proof.

Theorem All horses are of the same color.

Proof Let there be n horses. We proceed by induction on n. If n = 1, there is nothing to prove. So assume
that n > 1 and that the theorem holds for any group of n − 1 horses. From the given n horses discard one,
say the first one. Then all the remaining n − 1 horses are of the same color by the induction hypothesis.
Now put the first horse back and discard another, say the last one. Then the first n− 1 horses have the same
color again by the induction hypothesis. So all the n horses must have the same color as the ones that were
not discarded either time. •

12. The Fibonacci sequence is defined recursively as

F0 := 0,

F1 := 1,

Fn := Fn−1 + Fn−2 for n > 2.

Prove by induction that Fn = 1√
5

[(
1+
√

5
2

)n
−
(

1−
√

5
2

)n]
for all n ∈ N.

13. Let Fn, n ∈ N, denote the sequence of Fibonacci numbers defined in Exercise 12. By using induction on n
prove the following assertions:

(a) F 2
1 + F 2

2 + · · ·+ F 2
n = FnFn+1 for all n ∈ Z+.

(b) If A :=

(
1 1
1 0

)
, then An =

(
Fn+1 Fn
Fn Fn−1

)
for all n ∈ Z+.

(c) Fm+n = Fm−1Fn + FmFn+1 for all m ∈ N and n ∈ Z+.

14. Let Hn := 1
1 + 1

2 + · · ·+ 1
n for n > 1 (the h a r m o n i c n u m b e r s).

(a) Use calculus to show that ln(n + 1) 6 Hn 6 lnn + 1 for all n > 1. (Remark: It is known that
(Hn − lnn)→ γ as n→∞, where the constant γ = 0.57721566 . . . is called E u l e r ’ s c o n s t a n t .)

(b) Use induction to show that H1 +H2 + · · ·+Hn = (n+ 1)Hn − n for all n > 1.

15. Let S be a subset of N, such that 0 and 1 belong to S, and whenever n and n+ 1 belong to S, so also does
n+ 2. Prove that S = N.

16. Recursively define the following functions:

(a) f1 : N→ N given by f1(n) = 2n3 for all n ∈ N.

(b) f2 : N→ N given by f2(n) = n2 + 2n3 for all n ∈ N.

(c) f3 : N→ N given by f3(n) = 32n for all n ∈ N.

* (d) f4 : N→ N given by f4(n) = 2n + 32n for all n ∈ N.

(e) f5 : N→ N given by f5(n) = 32n for all n ∈ N.

(f) φ : Z+ → Z+ given by φ(n) := |{a | 1 6 a 6 n and gcd(a, n) = 1}|. (Hint: Use without proof the
results that φ(pe) = pe − pe−1 for a prime p and an exponent e ∈ Z+ and that if m,n are coprime, then
φ(mn) = φ(m)φ(n).)

(g) det :M→ Z, whereM is the set of all square matrices with integer entries, and where det(A) is the
determinant of a matrix A ∈M.

(h) The b i n o m i a l c o e f f i c i e n t s
()

: N× N→ N defined by
(n
k

)
=

{
n!

k!(n−k)! if k 6 n,
0 otherwise.

* (i) S : N × N → N, where the S t i r l i n g n u m b e r S(n, k) stands for the total number of ways of
partitioning a set of cardinality n into exactly k non-empty parts. (Hint: Let A := {a1, a2, . . . , an, an+1}.
A partition of A is of one of the two kinds: i) {an+1} is itself a member of the partition, and ii) an+1 lies in
a bigger set in the partition.)

17. Recursively define the following sets:

(a) S1 := {a ∈ N | a ≡ 3 or 5 (mod 7)}.
(b) S2 := {(a, b) ∈ N× N | a+ b is odd}.
(c) The set S3 of all palindromes over the binary alphabet {0, 1}.

* (d) The set S4 of all strings over the binary alphabet {0, 1}, that contain equal numbers of 0’s and 1’s.

** (e) The set S5 of all strings over the binary alphabet {0, 1} of the form αα for some α ∈ {0, 1}∗.

18. What is wrong in the following recursive definition of sets.
BASIS: The empty collection is a set.
INDUCTION: If S is a set and a is an object not present in S, then adding a to S gives a set.
(Hint: Infinity is not a natural number.)

19. Design recursive algorithms to compute the functions of Exercise 16. For Part (f) you may assume that you
are given subroutines for primality testing and factorization of positive integers.

20. For notations refer to Exercise 17. Design recursive algorithms that compute the following:

(a) Given k ∈ N, the cardinality of {a ∈ S1 | a 6 k}.
(b) Given k ∈ N, the elements of {a ∈ S1 | a 6 k}.
(c) Given (h, k) ∈ N2, the cardinality of {(a, b) ∈ S2 | (a, b) 6 (h, k) under the lexicographic ordering}.
(d) Given k ∈ N, the number of all palindromes over {0, 1} of length 6 k.

(e) Given k ∈ N, all palindromes over {0, 1} of length 6 k, with each palindrome printed exactly once
(but in any order of your convenience).

* (f) Given k ∈ N, the number of all strings of S4 of length 6 k.

Dr. Abhijit Das, Dept. of Computer Science & Engineering, IIT Kharagpur, India

