Practice exercises : Set 1

- 1. Prove the following equivalences of propositions:
 - (a) $(p \to q) \land (q \to r) \equiv (p \to r).$
 - **(b)** $p \to (q \to r) \equiv (p \land q) \to r.$
 - (c) $\neg p \rightarrow (q \rightarrow r) \equiv q \rightarrow (p \lor r).$

2. Which of the following statements is/are true?

- (a) $\forall x \in \mathbb{Z}^+ \left[\text{isComposite}(x) \to \exists y \in \mathbb{Z}^+ \setminus \{1, x\} [y \mid x] \right].$ (b) $\exists x \in \mathbb{Z}^+ \left[\text{isPrime}(x) \to \text{isOdd}(x+1) \right].$ (c) $\forall x \in \mathbb{Z}^+ \left[\text{isPrime}(x) \to (x=2) \lor \text{isEven}(x+1) \right].$ (d) $\forall x \in \mathbb{Z}^+ \left[\text{isPrime}(x) \to \left((x > 2) \to \text{isEven}(x+1) \right) \right].$ (e) $\forall x \in \mathbb{Z}^+ \exists y \in \mathbb{Z}^+ \left[(y > 1) \land (y^2 \mid x) \right].$ (f) $\forall x \in \mathbb{Z}^+ \exists y \in \mathbb{Z}^+ \forall z \in \mathbb{Z}^+ \setminus \{1\} \left[(y > x) \land (z^2 \mid y) \right].$ (g) $\forall x \in \mathbb{Z}^+ \forall z \in \mathbb{Z}^+ \setminus \{1\} \exists y \in \mathbb{Z}^+ \left[(y > x) \land (z^2 \mid y) \right].$
- *3. An open interval (in \mathbb{R}) is a subset (of \mathbb{R}) of the form $(a, b) := \{x \in \mathbb{R} \mid a < x < b\}$ for some a < b. A closed interval is a subset of the form $[a, b] := \{x \in \mathbb{R} \mid a \leq x \leq b\}$ for some a < b. A subset A of \mathbb{R} is called open if for all $x \in A$ there exists an open interval (a, b) containing x and contained in A. A subset B of \mathbb{R} is called closed if its complement in \mathbb{R} is open. Prove that:
 - (a) An open interval is an open set.
 - (b) A closed interval is a closed set.
 - (c) The union of an arbitrary number of open sets is again open.
 - (d) The intersection of a finite number of open sets is again open.
 - (e) The intersection of an infinite number of open sets need not be open.
 - **4.** Construct an explicit bijection between the sets \mathbb{N} and $\mathbb{N} \times \mathbb{N}$.
 - 5. Let A, B be finite sets with |A| = m and |B| = n. Determine the numbers of:
 - (a) functions $A \rightarrow B$,
 - (b) injective functions $A \to B$ (provided that $m \leq n$),
 - ****** (c) surjective functions $A \rightarrow B$ (provided that $m \ge n$),
 - (d) bijective functions $A \rightarrow B$ (provided that m = n),
 - (e) symmetric relations on A,
 - (f) reflexive and symmetric relations on A.
 - 6. Let $f : A \to B$ and $g : B \to C$ be functions.
 - (a) If f and g are both injective, prove that $g \circ f$ is injective too.
 - (b) If f and g are both surjective, prove that $g \circ f$ is surjective too.

(c) If f and g are both bijective, prove that $g \circ f$ is bijective too. Show also that in this case we have $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

- (d) If $g \circ f$ is injective, prove that f is injective too.
- (e) If $g \circ f$ is surjective, prove that g is surjective too.
- (f) Give an example in which g is not injective, but $g \circ f$ is injective.
- (g) Give an example in which f is not surjective, but $g \circ f$ is surjective.
- 7. Let A be a set of cardinality n := |A| and $f : A \to A$ a function.
 - (a) If n is finite, show that f is injective if and only if f is surjective.
 - (b) If $n = \infty$, demonstrate by examples that neither of the implications of Part (a) is true.
- 8. Let $f : A \to B$ be a function. For $S \subseteq A$ define the set $f(S) := \{f(x) \mid x \in S\} \subseteq B$. Also for $T \subseteq B$ define $f^{-1}(T) := \{x \in A \mid f(x) \in T\} \subseteq A$. Let S, S_1, S_2 be subsets of A and T, T_1, T_2 subsets of B. Prove the following assertions:
 - (a) If $S_1 \subseteq S_2$, then $f(S_1) \subseteq f(S_2)$.
 - **(b)** If $T_1 \subseteq T_2$, then $f^{-1}(T_1) \subseteq f^{-1}(T_2)$.
 - (c) $S \subseteq f^{-1}(f(S))$.
 - (d) $f(f^{-1}(T)) \subseteq T$.
 - (e) $f(f^{-1}(f(S))) = f(S)$.
 - (f) $f^{-1}(f(f^{-1}(T))) = f^{-1}(T)$.
- * 9. Let $f : A \to A$ be a bijection. Assume that there exists a positive integer r such that the r-fold composition f^r of f is the identity map ι_A . The smallest such (positive) r is called the order of f. If no such r exists, we say that f is of infinite order.

Take $A := \mathbb{Z}$ and consider the following functions $\mathbb{Z} \to \mathbb{Z}$:

$$f(n) := \begin{cases} n+1 & \text{if } n \text{ is even,} \\ n-1 & \text{if } n \text{ is odd.} \end{cases}$$
$$g(n) := \begin{cases} n-1 & \text{if } n \text{ is even,} \\ n+1 & \text{if } n \text{ is odd.} \end{cases}$$

Prove the following assertions:

- (a) Both f and g are bijections on \mathbb{Z} .
- (b) Both f and g are of order 2.
- (c) $g \circ f$ is of infinite order.
- 10. Take some fixed $n \in \mathbb{Z}^+$ and let \mathcal{M} denote the set of all $n \times n$ matrices with real entries. Two matrices $A, B \in \mathcal{M}$ are called similar if $B = PAP^{-1}$ for some invertible (i.e., nonsingular) matrix $P \in \mathcal{M}$. Verify that similarity is an equivalence relation on \mathcal{M} .
- 11. We generalize the notion of congruence as follows: Let m, n be positive integers. For $a, b \in \mathbb{Z}$ define $a \equiv b \pmod{m, n}$ if and only if a b = km + ln for some $k, l \in \mathbb{Z}$. Prove that:
 - (a) This generalized congruence is an equivalence relation on \mathbb{Z} .
 - * (b) $a \equiv b \pmod{m, n}$ if and only if $a \equiv b \pmod{d}$, where d is the gcd of a and b. (Hint: You may use without proof the fact that there exist integers u, v such that d = um + vn.)
- **12.** Let A denote the set of all functions $\mathbb{N} \to \mathbb{N}$. Define a relation \preceq on A as follows: $f \preceq g$ if and only if $f(n) \leq g(n)$ for all $n \in \mathbb{N}$. Argue that \preceq is a partial order on A. Is \preceq also a total order on A?
- **13.** Construct an explicit well-ordering of \mathbb{Z} . Also of $\mathbb{Z} \times \mathbb{Z}$ and of \mathbb{Q} .