CS30053 Foundations of Computing, Autumn 2004

End-Semester Examination

Total points: 50

November 27, 2004

Total time: 3 hours

(5)

(5)

(5)

(5)

Answer any four parts of Question 1 *and* any three of the remaining four Questions (2–5). You may get a bonus if you attempt more than four parts of Question 1. There is no bonus for solving all of the four Questions 2–5.

This test is open-notes. You may bring any amount of hand-written material.

1. Which of the following are true? No credits will be given without proper justifications. Attempt any four. (5×4)

(a) Let $f_1(n), f_2(n), g_1(n), g_2(n)$ be real-valued functions of natural numbers. Suppose also that $f_1(n) = \Theta(g_1(n))$ and $f_2(n) = \Theta(g_2(n))$. Then $f_1(n) + f_2(n) = \Theta(g_1(n) + g_2(n))$.

(b) The number a_n of strings of length n over $\{0, 1\}$, that contain 01 as a substring, satisfies the strict inequality $a_n < (n-1)2^{n-2}$ for all $n \ge 4$.

(c) Every string over $\{0, 1\}$ containing equal number of 0's and 1's belongs to the language of the regular expression $((01) \cup (10))^*$.

(d) Let $N = (S, \Sigma, s, F, \delta)$ be an NFA. Consider the NFA $N' = (S, \Sigma, s, S \setminus F, \delta)$ obtained from N by making the final states of N non-final and the non-final states final. Then $\mathcal{L}(N') = \overline{\mathcal{L}(N)}$.

- (e) The language $\{\alpha c\beta \mid \alpha, \beta \in \{a, b\}^*$ and the number of a's in α = the number of b's in β is regular.
- (f) The language $\{\alpha\beta \mid \alpha, \beta \in \{a, b\}^*$ and the number of a's in α = the number of b's in β } is regular.
- 2. (a) Let A := (ℝ × ℝ) \ {(0,0)}, i.e., A is the real plane with the origin removed. Define a relation ρ on A as (x, y) ρ (x', y') if and only if x' = cx and y' = cy for some non-zero real number c. Show that ρ is an equivalence relation on A.

(b) Let $f : \mathbb{Q} \to \mathbb{Q}$ be an injective function with the properties that f(x+y) = f(x) + f(y) and f(xy) = f(x)f(y) for all $x, y \in \mathbb{Q}$. Prove that f is the identity function on \mathbb{Q} . (5)

- **3.** Let a_n denote the number of strings of length n over $\{0, 1, 2\}$, that do not contain two consecutive 0's.
 - (a) Deduce a recurrence relation for a_n . Also determine the requisite boundary conditions. (5)
 - (b) Solve the recurrence relation of Part (a) to obtain a closed-form formula for a_n . (5)

4. Consider the language $L := \{ \alpha \in \{0, 1, 2\}^* \mid \alpha \text{ does not contain two consecutive } 0's \}.$

- (a) Describe a regular grammar for *L*.
- (b) Design a DFA to accept L.
- 5. Consider the context-free grammar $G = (V, \Sigma, S, P)$, where $V = \{S, A, B, a, b\}$, $\Sigma = \{a, b\}$, and P consists of the following productions:

- (a) Describe $\mathcal{L}(G)$ in English.
- (b) Prove that $\mathcal{L}(G)$ is not regular.