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End-Semester Examination : Solutions

1. (a) False. It is easy to see that n = Θ(n) and −n = Θ(n). But 0 = n+ (−n) is not Θ(2n).
However, if we concentrate only on non-negative real-valued functions, the given assertion is true. By
hypothesis there exist positive real constants c1, c2, d1, d2 and natural numbers N1, N2 such that:

c1g1(n) 6 f1(n) 6 d1g1(n) ∀n > N1

c2g2(n) 6 f2(n) 6 d2g2(n) ∀n > N2

Let c := min(c1, c2), d := max(d1, d2) and N := max(N1, N2). Here c and d are positive real constants
and N is a natural number. Moreover,

c(g1(n) + g2(n)) 6 (f1(n) + f2(n)) 6 d(g1(n) + g2(n)) ∀n > N .

(b) True. A string of length n containing 01 as a substring can be written as α01β for any string
α, β ∈ {0, 1}∗ with |α| + |β| = n − 2. For a given length l of α in {0, 1, . . . , n − 2} the length of β
becomes fixed (n − 2 − l), and total choices for α and β are 2l × 2n−2−l = 2n−2. Since there are n − 1
choices for l, we get a total of (n− 1)2n−2 strings of length n with 01 as a substring. However, for n > 4,
some strings are counted more than once. For example, any string of the form 0101γ is counted (at least)
twice, once as (01)01(γ) and once as (λ)01(01γ). In view of this, the exact number an is strictly less than
the above count (n− 1)2n−2 for n > 4.
The exact recurrence for an can be derived based on the first occurrence of 01. Thus a decomposition of the
form α01β with α not containing 01 is unique. This gives

an = (20 − a0)2n−2 + (21 − a1)2n−3 + (22 − a2)2n−4 + · · ·+ (2n−3 − an−3)21 + (2n−2 − an−2)20

for all n > 2.

(c) False. The string 0011 contains equal number of 0’s and 1’s, but cannot be generated by the regular
expression ((01)∪(10))∗.

(d) False. For the example below, the string 0 belongs to both L(N) and L(N ′).
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(e) False. Assume that the given language, call it L, is regular and let n be a pumping-lemma constant
for L. Then α := ancbn ∈ L and so by the pumping lemma, we get a decomposition α = β1β2β3 with
β2 non-empty and consisting only of a’s. But then β1β3 contains more b’s than a’s and still is in L, a
contradiction.

(f) True. The given language, call it L, is equal to Σ∗ (where Σ = {a, b}) which is clearly regular. For the
proof of the fact that any string γ ∈ Σ∗ can be decomposed as γ = αβ with the number of a’s in α equal to
the number of b’s in β, we proceed by induction on |γ|. If |γ| = 0, the decomposition γ = λλ suffices. So
assume that |γ| > 1 and that all strings of length |γ| − 1 belong to L. Consider the following two cases:
Case 1: γ = bγ′. By induction γ′ = α′β′ is a decomposition of γ ′ with the given property. Take α := bα′

and β := β′.
Case 2: γ = aγ′. Again let γ′ = α′β′ be a suitable decomposition of γ ′. If α′ = λ, then β′ is of the form ak

for some k ∈ N. But then γ = ak+1 and we can take α := λ and β := ak+1. If α′ = α′′a, take α := aα′′

and β := aβ′. Finally, if α′ = α′′b, take α := aα′′ and β := bβ′.



2. (a) Clearly, (x, y) = 1·(x, y). So ρ is reflexive. If (x′, y′) = c(x, y) for some c 6= 0, then (x, y) = 1
c (x
′, y′)

with 1
c 6= 0; so ρ is symmetric. Finally, if (x′, y′) = c(x, y) and (x′′, y′′) = c′(x′, y′) with nonzero c, c′,

then (x′′, y′′) = c′c(x, y) with c′c 6= 0, i.e., ρ is transitive.

(b) f(0) = f(0 + 0) = f(0) + f(0), so that f(0) = 0. Also f(1) = f(1 × 1) = f(1)f(1),
i.e., f(1) = 0, 1. Since f is injective and f(0) = 0, we have f(1) = 1. By induction on n we
can then show that f(n) = f(1) + f(n − 1) = 1 + (n − 1) = n for all n ∈ N. Moreover, since
0 = f(0) = f(n + (−n)) = f(n) + f(−n), it follows that f(−n) = −n for all n ∈ N. Finally, let
n/m ∈ Q with n ∈ Z and m ∈ Z+. We have n = f(n) = f((n/m) × m) = mf(n/m) and so
f(n/m) = n/m.

3. (a) Let α be a string over {0, 1, 2} of length n not containing two consecutive 0’s. Let n > 2. If the
first symbol of α is 1 or 2, the remaining part of α may be any string of length n − 1 not containing two
consecutive 0’s. However, if the first symbol of α is 0, the second symbol must be either 1 or 2, and the
remaining n− 2 symbols can form any string not containing two consecutive 0’s. It then follows that

an = 2an−1 + 2an−2 for n > 2 .

The boundary conditions are:

a0 = 1 (The empty string does not contain two consecutive 0’s.)

a1 = 3 (Each string of length 1 does not contain two consecutive 0’s.)

(b) The characteristic equation x2 − 2x− 2 = 0 has roots 1±
√

3, i.e., an = A(1 +
√

3)n +B(1−
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3)n

for some A,B. Plugging in the boundary conditions gives A = 2+
√
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3
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. Therefore,
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for all n ∈ N .

4. (a) The regular grammar G = (V,Σ, S, P ) defines the given language, where V = {S, T, 0, 1, 2},
Σ = {0, 1, 2}, and P consists of the following productions:

S → λ | 0 | 0T | 1S | 2S ,
T → 1S | 2S .

(b)
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5. (a) L := L(G) = {aibj | i, j ∈ N, 0 6 j 6 2i}. Well, I think this is perfect English!

(b) Suppose that L is regular and n a pumping lemma constant for L. Consider α := anb2n ∈ L. By the
pumping lemma we have α = β1β2β3 with β2 non-empty and consisting of a’s only. Moreover, L contains
β1β3 = amb2n with m < n, a contradiction.
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