CS30053 Foundations of Computing, Spring 2004

Class test 1

Total points: 25	August 26, 2004	Total time: $1 + \epsilon$ hour

- 1. Which of the following statements is/are true? (No credits will be given without proper justifications.) (2×7)
 - (a) $((p \rightarrow q) \land \neg p) \rightarrow \neg q$ is a tautology.
 - (b) $((p \rightarrow q) \land \neg q)$ is equivalent to $\neg (p \lor q)$.
 - (c) $\forall x \in \mathbb{R} \exists m \in \mathbb{Z} \exists n \in \mathbb{Z} [m < x < n].$
 - (d) $\forall x \in \mathbb{R} \exists m \in \mathbb{N} \exists n \in \mathbb{N} [m < x < n].$
 - (e) $\forall x \in \mathbb{R} \left[\left\lceil \lfloor x/2 \rfloor / 3 \right\rceil = \lfloor \lceil x/2 \rceil / 3 \rfloor \right].$
 - (f) The function $f : \mathbb{N} \to \mathbb{N}$ defined by $f(n) := n^2 + 2n + 3$ for all $n \in \mathbb{N}$ is injective.
 - (g) The function $g: \mathbb{Z} \to \mathbb{Z}$ defined by $g(n) := n^2 + 2n + 3$ for all $n \in \mathbb{Z}$ is injective.
- **2.** Let A be a finite set of cardinality n. Deduce that:
 - (a) The total number of anti-symmetric relations on A is $2^n 3^{n(n-1)/2}$. (3)
 - (b) The total number of relations on A, that are both symmetric and anti-symmetric, is 2^n . (3)
- **3.** Let A be one of the sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$. A function $\varphi : \mathbb{A} \to \mathbb{A}$ is called monotonic increasing if $m \leq n$ implies $\varphi(m) \leq \varphi(n)$. It is called strictly monotonic increasing if m < n implies $\varphi(m) < \varphi(n)$.
 - (a) Show that a strictly monotonic increasing function is injective.
 - (b) Give an example of a function $\mathbb{N} \to \mathbb{N}$ that is injective but not strictly monotonic increasing. (3)

(2)

(c) [Bonus] Let $f : \mathbb{N} \to \mathbb{N}$ be an injective function with the property that $|f(n+1) - f(n)| \leq 1$ for all $n \in \mathbb{N}$. Show that f is strictly monotonic increasing. (5)